TY - INPR A1 - Nazaikinskii, Vladimir E. A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - On the homotopy classification of elliptic operators on manifolds with edges N2 - We obtain a stable homotopy classification of elliptic operators on manifolds with edges. T3 - Preprint - (2004) 16 Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26769 ER - TY - INPR A1 - Nazaikinskii, Vladimir E. A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Quantization methods in differential equations : Chapter 2: Quantization of Lagrangian modules N2 - In this chapter we use the wave packet transform described in Chapter 1 to quantize extended classical states represented by so-called Lagrangian sumbanifolds of the phase space. Functions on a Lagrangian manifold form a module over the ring of classical Hamiltonian functions on the phase space (with respect to pointwise multiplication). The quantization procedure intertwines this multiplication with the action of the corresponding quantum Hamiltonians; hence we speak of quantization of Lagrangian modules. The semiclassical states obtained by this quantization procedure provide asymptotic solutions to differential equations with a small parameter. Locally, such solutions can be represented by WKB elements. Global solutions are given by Maslov's canonical operator [2]; also see, e.g., [3] and the references therein. Here the canonical operator is obtained in the framework of the universal quantization procedure provided by the wave packet transform. This procedure was suggested in [4] (see also the references there) and further developed in [5]; our exposition is in the spirit of these papers. Some further bibliographical remarks can be found in the beginning of Chapter 1. T3 - Preprint - (1999) 22 Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-25582 ER - TY - INPR A1 - Nazaikinskii, Vladimir E. A1 - Sternin, Boris T1 - Surgery and the relative index in elliptic theory N2 - We prove a general theorem on the local property of the relative index for a wide class of Fredholm operators, including relative index theorems for elliptic operators due to Gromov-Lawson, Anghel, Teleman, Booß-Bavnbek-Wojciechowski, et al. as special cases. In conjunction with additional conditions (like symmetry conditions) this theorem permits one to compute the analytical index of a given operator. In particular, we obtain new index formulas for elliptic pseudodifferential operators and quantized canonical transformations on manifolds with conical singularities as well as for elliptic boundary value problems with a symmetry condition for the conormal symbol. T3 - Preprint - (1999) 17 KW - elliptic operators KW - index theory KW - surgery KW - relative index KW - manifold with singularities KW - boundary value problems Y1 - 1999 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-25538 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 3: Eta invariant and the spectral flow N2 - Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah–Patodi–Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose’s Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah–Patodi–Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks T3 - Preprint - (2003) 12 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26595 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators N2 - Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. Hörmander’s definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah–Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks T3 - Preprint - (2003) 11 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26587 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 6: Elliptic theory on manifolds with edges N2 - Contents: Chapter 6: Elliptic Theory on Manifolds with Edges Introduction 6.1. Motivation and Main Constructions 6.1.1. Manifolds with edges 6.1.2. Edge-degenerate differential operators 6.1.3. Symbols 6.1.4. Elliptic problems 6.2. Pseudodifferential Operators 6.2.1. Edge symbols 6.2.2. Pseudodifferential operators 6.2.3. Quantization 6.3. Elliptic Morphisms and the Finiteness Theorem 6.3.1. Matrix Green operators 6.3.2. General morphisms 6.3.3. Ellipticity, Fredholm property, and smoothness Appendix A. Fiber Bundles and Direct Integrals A.1. Local theory A.2. Globalization A.3. Versions of the Definition of the Norm T3 - Preprint - (2004) 15 Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26757 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Elliptic theory on manifolds with nonisolated singularities : V. Index formulas for elliptic problems on manifolds with edges N2 - For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge. T3 - Preprint - (2003) 02 KW - manifold with edge KW - elliptic problem KW - index formula KW - symmetry conditions Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26500 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Differential operators on manifolds with singularities : analysis and topology : Chapter 1: Localization (surgery) in elliptic theory N2 - Contents: Chapter 1: Localization (Surgery) in Elliptic Theory 1.1. The Index Locality Principle 1.1.1. What is locality? 1.1.2. A pilot example 1.1.3. Collar spaces 1.1.4. Elliptic operators 1.1.5. Surgery and the relative index theorem 1.2. Surgery in Index Theory on Smooth Manifolds 1.2.1. The Booß–Wojciechowski theorem 1.2.2. The Gromov–Lawson theorem 1.3. Surgery for Boundary Value Problems 1.3.1. Notation 1.3.2. General boundary value problems 1.3.3. A model boundary value problem on a cylinder 1.3.4. The Agranovich–Dynin theorem 1.3.5. The Agranovich theorem 1.3.6. Bojarski’s theorem and its generalizations 1.4. (Micro)localization in Lefschetz theory 1.4.1. The Lefschetz number 1.4.2. Localization and the contributions of singular points 1.4.3. The semiclassical method and microlocalization 1.4.4. The classical Atiyah–Bott–Lefschetz theorem T3 - Preprint - (2003) 06 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26546 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Elliptic theory on manifolds with nonisolated singularities : I. The index of families of cone-degenerate operators N2 - We study the index problem for families of elliptic operators on manifolds with conical singularities. The relative index theorem concerning changes of the weight line is obtained. AN index theorem for families whose conormal symbols satisfy some symmetry conditions is derived. T3 - Preprint - (2002) 14 KW - elliptic family KW - conormal symbol KW - relative index KW - index formulas KW - symmetry conditions Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26327 ER - TY - INPR A1 - Nazaikinskii, Vladimir A1 - Savin, Anton A1 - Schulze, Bert-Wolfgang A1 - Sternin, Boris T1 - Elliptic theory on manifolds with nonisolated singularities : III. The spectral flow of families of conormal symbols N2 - When studyind elliptic operators on manifolds with nonisolated singularities one naturally encounters families of conormal symbols (i.e. operators elliptic with parameter p ∈ IR in the sense of Agranovich-Vishik) parametrized by the set of singular points. For homotopies of such families we define the notion of spectral flow, which in this case is an element of the K-group of the parameter space. We prove that the spectral flow is equal to the index of some family of operators on the infinite cone. T3 - Preprint - (2002) 20 KW - elliptic family KW - conormal symbol KW - spectral flow KW - relative index Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-26386 ER -