TY - JOUR A1 - Beye, Martin A1 - Anniyev, Toyli A1 - Coffee, Ryan A1 - Dell'Angela, Martina A1 - Föhlisch, Alexander A1 - Gladh, J. A1 - Katayama, T. A1 - Kaya, S. A1 - Krupin, O. A1 - Mogelhoj, A. A1 - Nilsson, A. A1 - Nordlund, D. A1 - Norskov, J. K. A1 - Oberg, H. A1 - Ogasawara, H. A1 - Pettersson, Lars G. M. A1 - Schlotter, W. F. A1 - Sellberg, J. A. A1 - Sorgenfrei, Nomi A1 - Turner, J. J. A1 - Wolf, M. A1 - Wurth, Wilfried A1 - Ostrom, H. T1 - Selective ultrafast probing of transient hot chemisorbed and precursor States of CO on Ru(0001) JF - Physical review letters N2 - We have studied the femtosecond dynamics following optical laser excitation of CO adsorbed on a Ru surface by monitoring changes in the occupied and unoccupied electronic structure using ultrafast soft x-ray absorption and emission. We recently reported [M. Dell'Angela et al. Science 339, 1302 (2013)] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical laser fluence. Ab initio molecular dynamics simulations of CO adsorbed on Ru(0001) were performed at 1500 and 3000 K providing insight into the desorption process. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevLett.110.186101 SN - 0031-9007 VL - 110 IS - 18 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Dell'Angela, Martina A1 - Anniyev, Toyli A1 - Beye, Martin A1 - Coffee, Ryan A1 - Föhlisch, Alexander A1 - Gladh, Jörgen A1 - Kaya, Sarp A1 - Katayama, Tetsuo A1 - Krupin, Oleg A1 - Nilsson, Anders A1 - Nordlund, Dennis A1 - Schlotter, William F. A1 - Sellberg, Jonas A. A1 - Sorgenfrei, Nomi A1 - Turner, Joshua J. A1 - ÖstrÖm, Henrik A1 - Ogasawara, Hirohito A1 - Wolf, Martin A1 - Wurth, Wilfried T1 - Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer JF - Structural dynamics N2 - Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse. (C) 2015 Author(s). Y1 - 2015 U6 - https://doi.org/10.1063/1.4914892 SN - 2329-7778 VL - 2 IS - 2 PB - American Institute of Physics CY - Melville ER -