TY - JOUR A1 - Acosta, Veronica Torres A1 - Schildgen, Taylor F. A1 - Clarke, Brian A. A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Wittmann, Hella A1 - von Blanckenburg, Friedhelm A1 - Strecker, Manfred T1 - Effect of vegetation cover on millennial-scale landscape denudation rates in East Africa JF - Lithosphere N2 - The mechanisms by which climate and vegetation affect erosion rates over various time scales lie at the heart of understanding landscape response to climate change. Plot-scale field experiments show that increased vegetation cover slows erosion, implying that faster erosion should occur under low to moderate vegetation cover. However, demonstrating this concept over long time scales and across landscapes has proven to be difficult, especially in settings complicated by tectonic forcing and variable slopes. We investigate this problem by measuring cosmogenic Be-10-derived catchment-mean denudation rates across a range of climate zones and hillslope gradients in the Kenya Rift, and by comparing our results with those published from the Rwenzori Mountains of Uganda. We find that denudation rates from sparsely vegetated parts of the Kenya Rift are up to 0.13 mm/yr, while those from humid and more densely vegetated parts of the Kenya Rift flanks and the Rwenzori Mountains reach a maximum of 0.08 mm/yr, despite higher median hillslope gradients. While differences in lithology and recent land-use changes likely affect the denudation rates and vegetation cover values in some of our studied catchments, hillslope gradient and vegetation cover appear to explain most of the variation in denudation rates across the study area. Our results support the idea that changing vegetation cover can contribute to complex erosional responses to climate or land-use change and that vegetation cover can play an important role in determining the steady-state slopes of mountain belts through its stabilizing effects on the land surface. Y1 - 2015 U6 - https://doi.org/10.1130/L402.1 SN - 1941-8264 SN - 1947-4253 VL - 7 IS - 4 SP - 408 EP - 420 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Ballato, Paolo A1 - Landgraf, Angela A1 - Schildgen, Taylor F. A1 - Stockli, Daniel F. A1 - Fox, Matthew A1 - Ghassemi, Mohammad R. A1 - Kirby, Eric A1 - Strecker, Manfred T1 - The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran JF - Earth & planetary science letters N2 - The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from similar to 36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from 6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a similar to 3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last similar to 5 Ma. (C) 2015 Elsevier B.V. All rights reserved. KW - orogenic processes KW - surface processes KW - base-level fall KW - erosion KW - rock uplift KW - knickpoints Y1 - 2015 U6 - https://doi.org/10.1016/j.epsl.2015.05.051 SN - 0012-821X SN - 1385-013X VL - 425 SP - 204 EP - 218 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ballato, Paolo A1 - Parra, Mauricio A1 - Schildgen, Taylor F. A1 - Dunkl, I. A1 - Yildirim, C. A1 - Ă–zsayin, Erman A1 - Sobel, Edward A1 - Echtler, H. A1 - Strecker, Manfred T1 - Multiple exhumation phases in the Central Pontides (N Turkey) BT - new temporal constraints on Major geodynamic changes associated with the closure of the Neo-Tethys Ocean JF - Tectonics N2 - The Central Pontides of N Turkey represents a mobile orogenic belt of the southern Eurasian margin that experienced several phases of exhumation associated with the consumption of different branches of the Neo-Tethys Ocean and the amalgamation of continental domains. Our new low-temperature thermochronology data help to constrain the timing of these episodes, providing new insights into associated geodynamic processes. In particular, our data suggest that exhumation occurred at (1) similar to 110 to 90Ma, most likely during tectonic accretion and exhumation of metamorphic rocks from the subduction zone; (2) from similar to 60 to 40Ma, during the collision of the Kirehir and Anatolide-Tauride microcontinental domains with the Eurasian margin; (3) from similar to 0 to 25Ma, either during the early stages of the Arabia-Eurasia collision (soft collision) when the Arabian passive margin reached the trench, implying 70 to 530km of subduction of the Arabian passive margin, or during a phase of trench advance predating hard collision at similar to 20Ma; and (4) similar to 11Ma to the present, during transpression associated with the westward motion of Anatolia. Our findings document the punctuated nature of fault-related exhumation, with episodes of fast cooling followed by periods of slow cooling or subsidence, the role of inverted normal faults in controlling the Paleogene exhumation pattern, and of the North Anatolian Fault in dictating the most recent pattern of exhumation. KW - thermal modeling KW - Central Pontides KW - Arabia-Eurasia collision KW - trench advance KW - Anatolia westward motion KW - inversion tectonics Y1 - 2018 U6 - https://doi.org/10.1029/2017TC004808 SN - 0278-7407 SN - 1944-9194 VL - 37 IS - 6 SP - 1831 EP - 1857 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Cosentino, Domenico A1 - Buchwaldt, Robert A1 - Sampalmieri, Gianluca A1 - Iadanza, Annalisa A1 - Cipollari, Paola A1 - Schildgen, Taylor F. A1 - Hinnov, Linda A. A1 - Ramezani, Jahandar A1 - Bowring, Samuel A. T1 - Refining the mediterranean "Messinian gap" with high-precision U-Pb zircon geochronology, central and northern Italy JF - Geology N2 - Astronomically tuned cyclic sedimentary successions provide unprecedented insight into the temporal evolution of depositional systems and major geologic events. However, placing astronomically calibrated records into an absolute time frame with confidence requires independent and precise geochronologic constraints. Astronomical tuning of the precessionally modulated sedimentary cycles of the Mediterranean Basin deposited during the Messinian Salinity Crisis (5.96-5.33 Ma) has indicated an similar to 90 k.y. "Messinian gap", corresponding to the evaporative drawdown of the Mediterranean following the closure of the Mediterranean-Atlantic gateway. In the Messinian deposits, a volcanic ash dated by Ar-40/Ar-39 geochronology was used to anchor the sedimentary cycles to the insolation curve. However, the uncertainty of the Ar-40/Ar-39 date introduces a potential two-cycle (similar to 40 k.y.) uncertainty in the tuning. Using high-precision chemical abrasion-thermal ionization mass spectrometry (CA-TIMS) U-Pb geochronology on single zircon grains from two Messinian ash layers in Italy, we obtained dates of 5.5320 +/- 0.0046 Ma and 5.5320 +/- 0.0074 Ma with sub-precessional resolution. Combined with our astronomical tuning of the Messinian Lower Evaporites, the results refine the duration of the "Messinian gap" to at most 28 or 58 +/- 9.6 k.y., which correlates with either the TG12 glacial interval alone, or both TG12 and TG14 glacial intervals, supporting the hypothesis of a glacio-eustatic contribution in fully isolating the Mediterranean from the Atlantic Ocean. Our new U-Pb dates also allow us to infer a precessionally modulated cyclicity for the post-evaporitic deposits, and hence enable us to tune those successions to the insolation curve. Y1 - 2013 U6 - https://doi.org/10.1130/G33820.1 SN - 0091-7613 VL - 41 IS - 3 SP - 323 EP - 326 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Cosentino, Domenico A1 - Schildgen, Taylor F. A1 - Cipollari, Paola A1 - Faranda, Costanza A1 - Gliozzi, Elsa A1 - Hudackova, Natalia A1 - Lucifora, Stella A1 - Strecker, Manfred T1 - Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey JF - Geological Society of America bulletin N2 - The timing and pattern of surface uplift of Miocene marine sediments capping the southern margin of the Central Anatolian Plateau in southern Turkey provide a first-order constraint on possible mechanisms of regional uplift. Nannofossil, ostracod, and planktic foraminifera biostratigraphy of the Basyayla section (Mut-Ermenek Basin) within the Mut and Kfiselerli Formations suggests a Tortonian age for marine sediments unconformably capping basement rocks at 2 km elevation. The identification of biozone MMi 12a (7.81-8.35 Ma) from planktic foraminifera in the upper part of the section provides the tightest constraint on the age, which is further limited to 8.35-8.108 Ma as a result of the reverse polarity of the collected samples (chron 4r.1 r or 4r.2r). This provides a limiting age for the onset of surface uplift at the margin of one of the world's major orogenic plateaus, from which an average uplift rate of 0.24-0.25 mm/yr can be calculated. Subhorizontal beds of the uppermost marine sediments exposed throughout the Mut-Ermenek Basin suggest minimal localized deformation, with just minor faulting at the basin margin and broad antiformal deformation across the basin. This implies that the post-8 Ma uplift mechanism must be rooted deep within the crust or in the upper mantle. Published Pn-wave velocity data for the region are compatible with topography compensated by asthenosphere across the southern margin of the plateau, showing a close match to the highest topography when elevations are filtered with a 100-km-wide smoothing window. Uplift along the southern margin of the Central Anatolian Plateau is also reflected by the pattern of Miocene marine sediments capping the margin, which form an asymmetric drape fold over the topography. These observations, together with tomographic evidence for slab steepening and break-off beneath the Eastern Anatolian Plateau, suggest that at least some of the 2 km of post-8 Ma uplift of the southern Central Anatolian Plateau margin is compensated by low-density asthenospheric mantle that upwelled following slab break-off. Y1 - 2012 U6 - https://doi.org/10.1130/B30466.1 SN - 0016-7606 VL - 124 IS - 1-2 SP - 133 EP - 145 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Dey, Saptarshi A1 - Thiede, Rasmus Christoph A1 - Schildgen, Taylor F. A1 - Wittmann, Hella A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Jain, Vikrant A1 - Strecker, Manfred T1 - Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India JF - Earth & planetary science letters N2 - Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 10(3) to 10(5) yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic Be-10 indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 +/- 3.2 ka and 43.0 +/- 2.7 ka (1 sigma). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 +/- 1.2 ka and 15.3 +/- 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 +/- 0.4 ka (T3), 7.1 +/- 0.4 ka (T4), 5.2 +/- 0.4 ka (T5) and 3.6 +/- 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision. (C) 2016 Elsevier B.V. All rights reserved. KW - alluvial-fan sedimentation KW - terrestrial cosmogenic nuclides KW - Indian Summer Monsoon KW - Last Glacial Maximum KW - paleo-erosion rate Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.05.050 SN - 0012-821X SN - 1385-013X VL - 449 SP - 321 EP - 331 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Dey, Saptarshi A1 - Thiede, Rasmus Christoph A1 - Schildgen, Taylor F. A1 - Wittmann, Hella A1 - Bookhagen, Bodo A1 - Scherler, Dirk A1 - Strecker, Manfred T1 - Holocene internal shortening within the northwest Sub-Himalaya: Out-of-sequence faulting of the Jwalamukhi Thrust, India JF - Tectonics N2 - The southernmost thrust of the Himalayan orogenic wedge that separates the foreland from the orogen, the Main Frontal Thrust, is thought to accommodate most of the ongoing crustal shortening in the Sub-Himalaya. Steepened longitudinal river profile segments, terrace offsets, and back-tilted fluvial terraces within the Kangra reentrant of the NW Sub-Himalaya suggest Holocene activity of the Jwalamukhi Thrust (JMT) and other thrust faults that may be associated with strain partitioning along the toe of the Himalayan wedge. To assess the shortening accommodated by the JMT, we combine morphometric terrain analyses with in situ Be-10-based surface-exposure dating of the deformed terraces. Incision into upper Pleistocene sediments within the Kangra Basin created two late Pleistocene terrace levels (T1 and T2). Subsequent early Holocene aggradation shortly before similar to 10ka was followed by episodic reincision, which created four cut-and-fill terrace levels, the oldest of which (T3) was formed at 10.10.9ka. A vertical offset of 445m of terrace T3 across the JMT indicates a shortening rate of 5.60.8 to 7.51.1mma(-1) over the last similar to 10ka. This result suggests that thrusting along the JMT accommodates 40-60% of the total Sub-Himalayan shortening in the Kangra reentrant over the Holocene. We speculate that this out-of-sequence shortening may have been triggered or at least enhanced by late Pleistocene and Holocene erosion of sediments from the Kangra Basin. KW - fluvial terrace KW - cosmogenic nuclides KW - steepness index KW - Jwalamukhi Thrust KW - shortening KW - orogenic wedge Y1 - 2016 U6 - https://doi.org/10.1002/2015TC004002 SN - 0278-7407 SN - 1944-9194 VL - 35 SP - 2677 EP - 2697 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Garcin, Yannick A1 - Schildgen, Taylor F. A1 - Acosta, Veronica Torres A1 - Melnick, Daniel A1 - Guillemoteau, Julien A1 - Willenbring, Jane A1 - Strecker, Manfred T1 - Short-lived increase in erosion during the African Humid Period BT - evidence from the northern Kenya Rift JF - Earth & planetary science letters N2 - The African Humid Period (AHP) between similar to 15 and 5.5 cal. kyr BP caused major environmental change in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive (similar to 2150 km(2)), deep (similar to 300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta provide insights into the lake-level history and how erosion rates changed during this time, as revealed by delta-volume estimates and the concentration of cosmogenic Be-10 in fluvial sand. Erosion rates derived from delta-volume estimates range from 0.019 to 0.03 mm yr(-1). Be-10-derived paleo-erosion rates at similar to 11.8 cal. kyr BP ranged from 0.035 to 0.086 mm yr(-1), and were 2.7 to 6.6 times faster than at present. In contrast, at similar to 8.7 cal. kyr BP, erosion rates were only 1.8 times faster than at present. Because Be-10-derived erosion rates integrate over several millennia; we modeled the erosion-rate history that best explains the 10Be data using established non-linear equations that describe in situ cosmogenic isotope production and decay. Two models with different temporal constraints (15-6.7 and 12-6.7 kyr) suggest erosion rates that were 25 to 300 times higher than the initial erosion rate (pre-delta formation). That pulse of high erosion rates was short (similar to 4 kyr or less) and must have been followed by a rapid decrease in rates while climate remained humid to reach the modern Be-10-based erosion rate of,similar to 0.013 mm yr(-1). Our simulations also flag the two highest Be-10-derived erosion rates at 11.8 kyr BP related to nonuniform catchment erosion. These changes in erosion rates and processes during the AHP may reflect a strong increase in precipitation, runoff, and erosivity at the arid-to-humid transition either at 15 or similar to 12 cal. kyr BP, before the landscape stabilized again, possibly due to increased soil production and denser vegetation. KW - northern Kenya Rift KW - Baragoi KW - paleo-delta KW - African Humid Period KW - erosion KW - Be-10 Y1 - 2017 U6 - https://doi.org/10.1016/j.epsl.2016.11.017 SN - 0012-821X SN - 1385-013X VL - 459 SP - 58 EP - 69 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Geissman, John A1 - Jolivet, Laurent A1 - Niemi, Nathan A1 - Schildgen, Taylor F. T1 - Thank you to our 2017 Peer Reviewers T2 - Tectonics N2 - An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published as accurate, valuable, and clearly communicated. The over 152 papers published in Tectonics in 2017 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2017, the over 423 papers submitted to Tectonics were the beneficiaries of more than 786 reviews provided by 562 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible. Y1 - 2018 U6 - https://doi.org/10.1029/2018TC005194 SN - 0278-7407 SN - 1944-9194 VL - 37 IS - 8 SP - 2272 EP - 2277 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Geissman, John A1 - Jolivet, Laurent A1 - Rusmore, Margi A1 - Niemi, Nathan A1 - Schildgen, Taylor F. T1 - Thank you to our 2018 peer reviewers T2 - Tectonics N2 - An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published are as accurate, valuable, and clearly communicated. The over 216 papers published in Tectonics in 2018 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2018, the over 443 papers submitted to Tectonics were the beneficiaries of more than 1,010 reviews provided by 668 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible. Y1 - 2019 U6 - https://doi.org/10.1029/2019TC005595 SN - 0278-7407 SN - 1944-9194 VL - 38 IS - 4 SP - 1159 EP - 1163 PB - Hoboken CY - Wiley ER -