TY - JOUR A1 - Akarsu, Pinar A1 - Grobe, Richard A1 - Nowaczyk, Julius A1 - Hartlieb, Matthias A1 - Reinicke, Stefan A1 - Böker, Alexander A1 - Sperling, Marcel A1 - Reifarth, Martin T1 - Solid-phase microcontact printing for precise patterning of rough surfaces BT - using polymer-tethered elastomeric stamps for the transfer of reactive silanes JF - ACS applied polymer materials N2 - We present a microcontact printing (mu CP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (H-1-H-1-NOESY-NMR). We analyze the mu CP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates. KW - microcontact printing KW - capillary-active substrates KW - silane chemistry KW - PDMS surface grafting KW - surface patterning KW - shuttled RAFT-polymerization Y1 - 2021 U6 - https://doi.org/10.1021/acsapm.1c00024 SN - 2637-6105 VL - 3 IS - 5 SP - 2420 EP - 2431 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Floyd, Thomas G. A1 - Song, Ji-Inn A1 - Hapeshi, Alexia A1 - Laroque, Sophie A1 - Hartlieb, Matthias A1 - Perrier, Sebastien T1 - Bottlebrush copolymers for gene delivery: influence of architecture, charge density, and backbone length on transfection efficiency JF - Journal of materials chemistry : B, materials for biology and medicine N2 - The influence of polymer architecture of polycations on their ability to transfect mammalian cells is probed. Polymer bottle brushes with grafts made from partially hydrolysed poly(2-ethyl-2-oxazoline) are used while varying the length of the polymer backbone as well as the degree of hydrolysis (cationic charge content). Polyplex formation is investigated via gel electrophoresis, dye-displacement and dynamic light scattering. Bottle brushes show a superior ability to complex pDNA when compared to linear copolymers. Also, nucleic acid release was found to be improved by a graft architecture. Polyplexes based on bottle brush copolymers showed an elongated shape in transmission electron microscopy images. The cytotoxicity against mammalian cells is drastically reduced when a graft architecture is used instead of linear copolymers. Moreover, the best-performing bottle brush copolymer showed a transfection ability comparable with that of linear poly(ethylenimine), the gold standard of polymeric transfection agents, which is used as positive control. In combination with their markedly lowered cytotoxicity, cationic bottle brush copolymers are therefore shown to be a highly promising class of gene delivery vectors. Y1 - 2022 U6 - https://doi.org/10.1039/d2tb00490a SN - 2050-750X SN - 2050-7518 VL - 10 IS - 19 SP - 3696 EP - 3704 PB - Royal Society of Chemistry CY - London [u.a.] ER - TY - JOUR A1 - Hartlieb, Matthias T1 - Photo-iniferter RAFT polymerization JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail. KW - light KW - photo-iniferter reversible addition-fragmentation chain-transfer KW - photo-mediated polymerization KW - radical polymerization KW - reversible KW - addition-fragmentation chain-transfer polymerization Y1 - 2021 U6 - https://doi.org/10.1002/marc.202100514 SN - 1521-3927 VL - 43 IS - 1 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hartlieb, Matthias A1 - Catrouillet, Sylvain A1 - Kuroki, Agnes A1 - Sanchez-Cano, Carlos A1 - Peltier, Raoul A1 - Perrier, Sebastien T1 - Stimuli-responsive membrane activity of cyclic-peptide-polymer conjugates JF - Chemical science N2 - Cyclic peptide nanotubes (CPNT) consisting of an even number of amino acids with an alternating chirality are highly interesting materials in a biomedical context due to their ability to insert themselves into cellular membranes. However, unwanted unspecific interactions between CPNT and non-targeted cell membranes are a major drawback. To solve this issue we have synthetized a series of CPNT-polymer conjugates with a cleavable covalent connection between macromolecule and peptide. As a result, the polymers form a stabilizing and shielding shell around the nanotube that can be cleaved on demand to generate membrane active CPNT from non-active conjugates. This approach enables us to control the stacking and lateral aggregation of these materials, thus leading to stimuli responsive membrane activity. Moreover, upon activation, the systems can be adjusted to form nanotubes with an increased length instead of aggregates. We were able to study the dynamics of these systems in detail and prove the concept of stimuli responsive membrane interaction using CPNT-polymer conjugates to permeabilize liposomes as well as mammalian cell membranes. Y1 - 2019 U6 - https://doi.org/10.1039/c9sc00756c SN - 2041-6520 SN - 2041-6539 VL - 10 IS - 21 SP - 5476 EP - 5483 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Hartlieb, Matthias A1 - Mansfield, Edward D. H. A1 - Perrier, Sebastien T1 - A guide to supramolecular polymerizations JF - Polymer Chemistry N2 - Supramolecular polymers or fibers are non-covalent assemblies of unimeric building blocks connected by secondary interactions such as hydrogen bonds or pi-pi interactions. Such structures hold enormous potential in the development of future materials, as their non-covalent nature makes them highly modular and adaptive. Within this review we aim to provide a broad overview over the area of linear supramolecular polymers including the different mechanisms of their polymerization as well as methods essential for their characterization. The different non-covalent interactions able to form supramolecular polymers are discussed, and key examples for each species are shown. Particular emphasis is laid on the development of living supramolecular polymerization able to produce fibers with a controlled length and low length dispersity, and even enable the production of supramolecular block copolymers. Another important and very recent field is the development of out-of-equilibrium supramolecular polymers, where the polymerization process can be temporally controlled enabling access to highly adaptive materials. Y1 - 2020 U6 - https://doi.org/10.1039/c9py01342c SN - 1759-9954 SN - 1759-9962 VL - 11 IS - 6 SP - 1083 EP - 1110 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kuroki, Agnes A1 - Tchoupa, Arnaud Kengmo A1 - Hartlieb, Matthias A1 - Peltier, Raoul A1 - Locock, Katherine E. S. A1 - Unnikrishnan, Meera A1 - Perrier, Sebastien T1 - Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship JF - Biomaterials : biomaterials reviews online N2 - Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy. KW - Antimicrobial KW - Intracellular bacteria KW - Block copolymers KW - RAFT polymerization Y1 - 2019 U6 - https://doi.org/10.1016/j.biomaterials.2019.119249 SN - 0142-9612 SN - 1878-5905 VL - 217 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Laroque, Sophie A1 - Reifarth, Martin A1 - Sperling, Marcel A1 - Kersting, Sebastian A1 - Kloepzig, Stefanie A1 - Budach, Patrick A1 - Hartlieb, Matthias A1 - Storsberg, Joachim T1 - Impact of multivalence and self-assembly in the design of polymeric antimicrobial peptide mimics JF - ACS applied materials & interfaces N2 - Antimicrobial resistance is an increasingly serious challenge for public health and could result in dramatic negative consequences for the health care sector during the next decades. To solve this problem, antibacterial materials that are unsusceptible toward the development of bacterial resistance are a promising branch of research. In this work, a new type of polymeric antimicrobial peptide mimic featuring a bottlebrush architecture is developed, using a combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and ring-opening metathesis polymerization (ROMP). This approach enables multivalent presentation of antimicrobial subunits resulting in improved bioactivity and an increased hemocompatibility, boosting the selectivity of these materials for bacterial cells. Direct probing of membrane integrity of treated bacteria revealed highly potent membrane disruption caused by bottlebrush copolymers. Multivalent bottlebrush copolymers clearly outperformed their linear equivalents regarding bioactivity and selectivity. The effect of segmentation of cationic and hydrophobic subunits within bottle brushes was probed using heterograft copolymers. These materials were found to self-assemble under physiological conditions, which reduced their antibacterial activity, highlighting the importance of precise structural control for such applications. To the best of our knowledge, this is the first example to demonstrate the positive impact of multivalence, generated by a bottlebrush topology in polymeric antimicrobial peptide mimics, making these polymers a highly promising material platform for the design of new bactericidal systems. KW - RAFT polymerization KW - ROMP KW - antimicrobial polymers KW - antimicrobial peptide KW - mimics KW - bottlebrush copolymers Y1 - 2020 U6 - https://doi.org/10.1021/acsami.0c05944 SN - 1944-8244 SN - 1944-8252 VL - 12 IS - 27 SP - 30052 EP - 30065 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Reifarth, Martin A1 - Bekir, Marek A1 - Bapolisi, Alain M. A1 - Titov, Evgenii A1 - Nusshardt, Fabian A1 - Nowaczyk, Julius A1 - Grigoriev, Dmitry A1 - Sharma, Anjali A1 - Saalfrank, Peter A1 - Santer, Svetlana A1 - Hartlieb, Matthias A1 - Böker, Alexander T1 - A dual pH- and light-responsive spiropyrane-based surfactant BT - investigations on Its switching behavior and remote control over emulsion stability JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - A cationic surfactant containing a spiropyrane unit is prepared exhibiting a dual-responsive adjustability of its surface-active characteristics. The switching mechanism of the system relies on the reversible conversion of the non-ionic spiropyrane (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH-dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli-responsive behavior enables remote-control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH-dependent manipulation of oil-in-water emulsions. KW - Dual-Responsiveness KW - Manipulation of Emulsion Stability KW - Spiropyrane KW - Surfactant KW - Switchable Surfactants KW - pH-Dependent Photoresponsivity Y1 - 2022 U6 - https://doi.org/10.1002/anie.202114687 SN - 1433-7851 SN - 1521-3773 VL - 61 IS - 21 PB - Wiley-VCH CY - Weinheim ER -