TY - THES A1 - Fernandez Palomino, Carlos Antonio T1 - Understanding hydrological dynamics in the tropical Andes of Peru and Ecuador and their responses to climate change T1 - Verständnis der hydrologischen Dynamik in den tropischen Anden von Peru und Ecuador und ihrer Reaktionen auf den Klimawandel N2 - Human-induced climate change is impacting the global water cycle by, e.g., causing changes in precipitation patterns, evapotranspiration dynamics, cryosphere shrinkage, and complex streamflow trends. These changes, coupled with the increased frequency and severity of extreme hydrometeorological events like floods, droughts, and heatwaves, contribute to hydroclimatic disasters, posing significant implications for local and global infrastructure, human health, and overall productivity. In the tropical Andes, climate change is evident through warming trends, glacier retreats, and shifts in precipitation patterns, leading to altered risks of floods and droughts, e.g., in the upper Amazon River basin. Projections for the region indicate rising temperatures, potential glacier disappearance or substantial shrinkage, and altered streamflow patterns, highlighting challenges in water availability due to these expected changes and growing human water demand. The evolving trends in hydroclimatic conditions in the tropical Andes present significant challenges to socioeconomic and environmental systems, emphasizing the need for a comprehensive understanding to guide effective adaptation policies and strategies in response to the impacts of climate change in the region. The main objective of this thesis is to investigate current hydrological dynamics in the tropical Andes of Peru and Ecuador and their responses to climate change. Given the scarcity of hydrometeorological data in the region, this objective was accomplished through a comprehensive data preparation and analysis in combination with hydrological modeling using the Soil and Water Assessment Tool (SWAT) eco-hydrological model. In this context, the initial steps involved assessing, identifying, and/or generating more reliable climate input data to address data limitations. The thesis introduces RAIN4PE, a high-resolution precipitation dataset for Peru and Ecuador, developed by merging satellite, reanalysis, and ground-based data with surface elevation through the random forest method. Further adjustments of precipitation estimates were made for catchments influenced by fog/cloud water input on the eastern side of the Andes using streamflow data and applying the method of reverse hydrology. RAIN4PE surpasses other global and local precipitation datasets, showcasing superior reliability and accuracy in representing precipitation patterns and simulating hydrological processes across the tropical Andes. This establishes it as the optimal precipitation product for hydrometeorological applications in the region. Due to the significant biases and limitations of global climate models (GCMs) in representing key atmospheric variables over the tropical Andes, this study developed regionally adapted GCM simulations specifically tailored for Peru and Ecuador. These simulations are known as the BASD-CMIP6-PE dataset, and they were derived using reliable, high-resolution datasets like RAIN4PE as reference data. The BASD-CMIP6-PE dataset shows notable improvements over raw GCM simulations, reflecting enhanced representations of observed climate properties and accurate simulation of streamflow, including high and low flow indices. This renders it suitable for assessing regional climate change impacts on agriculture, water resources, and hydrological extremes. In addition to generating more accurate climatic input data, a reliable hydrological model is essential for simulating watershed hydrological processes. To tackle this challenge, the thesis presents an innovative multiobjective calibration framework integrating remote sensing vegetation data, baseflow index, discharge goodness-of-fit metrics, and flow duration curve signatures. In contrast to traditional calibration strategies relying solely on discharge goodness-of-fit metrics, this approach enhances the simulation of vegetation, streamflow, and the partitioning of flow into surface runoff and baseflow in a typical Andean catchment. The refined hydrological model calibration strategy was applied to conduct reliable simulations and understand current and future hydrological trajectories in the tropical Andes. By establishing a region-suitable and thoroughly tested hydrological model with high-resolution and reliable precipitation input data from RAIN4PE, this study provides new insights into the spatiotemporal distribution of water balance components in Peru and transboundary catchments. Key findings underscore the estimation of Peru's total renewable freshwater resource (total river runoff of 62,399 m3/s), with the Peruvian Amazon basin contributing 97.7%. Within this basin, the Amazon-Andes transition region emerges as a pivotal hotspot for water yield (precipitation minus evapotranspiration), characterized by abundant rainfall and lower atmospheric water demand/evapotranspiration. This finding underlines its paramount role in influencing the hydrological variability of the entire Amazon basin. Subsurface hydrological pathways, particularly baseflow from aquifers, strongly influence water yield in lowland and Andean catchments, sustaining streamflow, especially during the extended dry season. Water yield demonstrates an elevation- and latitude-dependent increase in the Pacific Basin (catchments draining into the Pacific Ocean), while it follows an unimodal curve in the Peruvian Amazon Basin, peaking in the Amazon-Andes transition region. This observation indicates an intricate relationship between water yield and elevation. In Amazon lowlands rivers, particularly in the Ucayali River, floodplains play a significant role in shaping streamflow seasonality by attenuating and delaying peak flows for up to two months during periods of high discharge. This observation underscores the critical importance of incorporating floodplain dynamics into hydrological simulations and river management strategies for accurate modeling and effective water resource management. Hydrological responses vary across different land use types in high Andean catchments. Pasture areas exhibit the highest water yield, while agricultural areas and mountain forests show lower yields, emphasizing the importance of puna (high-altitude) ecosystems, such as pastures, páramos, and bofedales, in regulating natural storage. Projected future hydrological trajectories were analyzed by driving the hydrological model with regionalized GCM simulations provided by the BASD-CMIP6-PE dataset. The analysis considered sustainable (low warming, SSP1-2.6) and fossil fuel-based development (high-end warming, SSP5-8.5) scenarios for the mid (2035-2065) and end (2065-2095) of the century. The projected changes in water yield and streamflow across the tropical Andes exhibit distinct regional and seasonal variations, particularly amplified under a high-end warming scenario towards the end of the century. Projections suggest year-round increases in water yield and streamflow in the Andean regions and decreases in the Amazon lowlands, with exceptions such as the northern Amazon expecting increases during wet seasons. Despite these regional differences, the upper Amazon River's streamflow is projected to remain relatively stable throughout the 21st century. Additionally, projections anticipate a decrease in low flows in the Amazon lowlands and an increased risk of high flows (floods) in the Andean and northern Amazon catchments. This thesis significantly contributes to enhancing climatic data generation, overcoming regional limitations that previously impeded hydrometeorological research, and creating new opportunities. It plays a crucial role in advancing hydrological model calibration, improving the representation of internal hydrological processes, and achieving accurate results for the right reasons. Novel insights into current hydrological dynamics in the tropical Andes are fundamental for improving water resource management. The anticipated intensified changes in water flows and hydrological extreme patterns under a high-end warming scenario highlight the urgency of implementing emissions mitigation and adaptation measures to address the heightened impacts on water resources. In fact, the new datasets (RAIN4PE and BASD-CMIP6-PE) have already been utilized by researchers and experts in regional and local-scale projects and catchments in Peru and Ecuador. For instance, they have been applied in river catchments such as Mantaro, Piura, and San Pedro to analyze local historical and future developments in climate and water resources. N2 - Menschgemachter Klimawandel beeinflusst den globalen Wasserkreislauf durch Veränderungen in Niederschlagsmustern, Verdunstungsdynamiken, dem Rückgang der Gletscher und komplexen Trends in den Abflussraten in den Flüssen. Diese Veränderungen, gepaart mit der zunehmenden Häufigkeit und Schwere von extremen hydrometeorologischen Ereignissen wie Überschwemmungen, Dürren und Hitzewellen, tragen zu hydroklimatischen Katastrophen bei und haben erhebliche Auswirkungen auf lokale und globale Infrastruktur, die menschliche Gesundheit und die Gesamtproduktivität. In den tropischen Anden zeigt sich der Klimawandel durch Erwärmungstrends, Gletscherschmelzen und Verschiebungen in den Niederschlagsmustern, was zu erhöhten Risiken von Überschwemmungen und Dürren führt, beispielsweise im oberen Amazonas-Einzugsgebiet. Projektionen für die Region deuten auf steigende Temperaturen, potenzielles Verschwinden oder erhebliche Schrumpfung von Gletschern und veränderte Abflussmuster hin, was die Herausforderungen bei der Wasserverfügbarkeit aufgrund dieser erwarteten Veränderungen und des wachsenden menschlichen Wasserbedarfs zeigt. Die Trends in den hydroklimatischen Bedingungen in den tropischen Anden stellen erhebliche Herausforderungen für sozioökonomische und Umweltsysteme dar und unterstreichen die Notwendigkeit eines umfassenden Verständnisses, um effektive Anpassungspolitiken und -strategien im Hinblick auf die Auswirkungen des Klimawandels in der Region zu steuern. Das Hauptziel dieser Dissertation ist es, die aktuellen hydrologischen Dynamiken in den tropischen Anden von Peru und Ecuador und ihre Reaktionen auf den Klimawandel zu untersuchen. Aufgrund der Knappheit von hydrometeorologischen Daten in der Region wurde dieses Ziel durch eine umfassende Datenvorbereitung und -analyse in Kombination mit hydrologische Modellierung mithilfe des ökohydrologischen Modells Soil and Water Assessment Tool (SWAT) erreicht. Die ersten Schritte umfassten die Bewertung, Identifizierung und/oder Generierung zuverlässigerer Klimadaten, um Datenbeschränkungen zu bewältigen. Die Arbeit beginnt mit der Vorstellung von RAIN4PE, einen hochauflösenden Niederschlagsdatensatz für Peru und Ecuador, der durch die Zusammenführung von Satelliten-, Reanalysen- und bodengestützten Daten mit der Geländeoberfläche durch die Methode des Random Forest entwickelt wurde. Weitere Anpassungen der Niederschlagsschätzungen erfolgen unter Verwendung von Abflussdaten für Einzugsgebiete, die durch den Einfluss von Nebel-/Wolkenwasser auf der östlichen Seite der Anden beeinflusst werden, und mit Hilfe der Methode der Reverse-Hydrologie. RAIN4PE übertrifft andere globale und lokale Niederschlagsdatensätze und zeigt eine überlegene Zuverlässigkeit und Genauigkeit bei der Darstellung von Niederschlagsmustern und der Simulation hydrologischer Prozesse in den tropischen Anden. Dies etabliert ihn als das optimale Niederschlagsprodukt für hydrometeorologische Anwendungen in der Region. Aufgrund der signifikanten Ungenauigkeiten und Beschränkungen globaler Klimamodelle (GCMs) bei der Darstellung wichtiger atmosphärischer Variablen über den tropischen Anden entwickelte diese Studie regional angepasste GCM-Simulationen, die speziell für Peru und Ecuador maßgeschneidert wurden. Diese Simulationen sind als der BASD-CMIP6-PE-Datensatz bekannt und wurden unter Verwendung zuverlässiger, hochauflösender Datensätze wie RAIN4PE als Referenzdaten abgeleitet. Der BASD-CMIP6-PE-Datensatz weist gegenüber rohen GCM-Ergebnissen bedeutende Verbesserungen auf, zeigt eine verbesserte Darstellung beobachteter Klimaeigenschaften und eine genaue Simulation des Wasserabflusses einschließlich seiner Hoch- und Niedrigflussindizes. Dies macht ihn geeignet, regionale Auswirkungen des Klimawandels auf Landwirtschaft, Wasserressourcen und hydrologische Extremereignisse zu bewerten. Zusätzlich zur Generierung genauerer klimatischer Eingabedaten ist ein zuverlässiges hydrologisches Modell für die Simulation hydrologischer Dynamiken im Einzugsgebiet unerlässlich. Um diese Herausforderung zu bewältigen, stellt die Arbeit einen innovativen multiobjektiven Kalibrierungsrahmen vor, der fernerkundungsbasierte Vegetationsdaten, Basisabfluss-Index, Abflussgütemaße und Kennzeichen der Abflussdauerkurve integriert. Im Gegensatz zu traditionellen Kalibrierungsstrategien, die ausschließlich auf Abflussgütemaße beruhen, verbessert dieser Ansatz die Simulation von Vegetation, Wasserabfluss und Aufteilung des Abflusses in Oberflächen- und Basisabfluss in einem typischen Anden-Einzugsgebiet. Die verfeinerte Kalibrierungsstrategie des hydrologischen Modells wurde angewendet, um zuverlässigere Simulationen zu erzielen und aktuelle und zukünftige hydrologische Entwicklungen in den tropischen Anden zu verstehen. Aufbauend auf einer der Region angepassten hydrologischen Modell mit hochauflösenden und zuverlässigen Niederschlagsdaten von RAIN4PE liefert diese Studie neue Einblicke in die räumlich-zeitliche Verteilung von Wasserbilanzkomponenten in Peru und grenzüberschreitenden Einzugsgebieten. Die wichtigsten Erkenntnisse betonen die Schätzung der Gesamtmenge an erneuerbarem Süßwasser in Peru (Gesamtwasserabfluss von 62.399 m3/s), wobei das peruanische Amazonasbecken 97,7% dazu beiträgt. Innerhalb dieses Beckens wird die Übergangsregion Amazonas-Anden als zentraler Hotspot für Wasserertrag (Niederschlag minus Evapotranspiration) hervorgehoben, geprägt durch reichlichen Niederschlag und eine geringere atmosphärische Wassernachfrage/Evapotranspiration. Diese Erkenntnis unterstreicht ihre herausragende Rolle bei der Beeinflussung der hydrologischen Variabilität des gesamten Amazonasbeckens. Unterirdische hydrologische Komponenten, insbesondere der Grundwasserabfluss, beeinflussen deutlich die Abflussbildung in Tiefland- und Anden-Einzugsgebieten und unterstützen den Abfluss in den Flüssen, insbesondere während der verlängerten Trockenzeit. Wasserertrag zeigt einen höhen- und breitengradabhängigen Anstieg im Pazifikbecken (Einzugsgebiete, die in den Pazifik münden), während er im peruanischen Amazonasbecken einer unimodalen Kurve folgt und im Übergangsgebiet Amazonas-Anden seinen Höhepunkt erreicht. Dieses Ergebnis verdeutlicht den Zusammenhang zwischen Abflussbildung und Geländehöhe. In Flüssen der Tiefebenen des Amazonas, insbesondere im Ucayali-Fluss, spielen Überschwemmungsgebiete eine bedeutende Rolle bei der saisonalen Wasserflussdynamik, indem sie Spitzenflüsse für bis zu zwei Monate während Perioden hoher Abflüsse abschwächen und verzögern. Dieses Ergebnis unterstreicht die Wichtigkeit der Einbeziehung von Überschwemmungsdynamiken in hydrologische Simulationen und Flussmanagementstrategien für eine präzise Modellierung und effektive Wasserressourcenbewirtschaftung. Hydrologische Reaktionen variieren je nach Landnutzungstypen in hohen Anden-Einzugsgebieten. Weideflächen zeigen den höchsten Wasserertrag, während landwirtschaftliche Flächen und Bergwälder geringere Wasserertrag aufweisen, was die Bedeutung von Puna (hochgelegenen) Ökosystemen wie Weiden, Páramos und Bofedales bei der Regulierung natürlicher Speicher betont. Projektierte zukünftige hydrologische Entwicklungen wurden analysiert, indem das hydrologische Modell mit regionalisierten GCM-Simulationen des BASD-CMIP6-PE-Datensatzes angetrieben wurde. Diese Analyse berücksichtigte nachhaltige (geringe Erwärmung, SSP1-2.6) und auf starker Nutzung fossiler Brennstoffe basierende (hochgradige Erwärmung, SSP5-8.5) Szenarien für die Mitte (2035-2065) und das Ende (2065-2095) des 21. Jahrhunderts. Die projektierten Veränderungen in Wasserertrag und Wasserabfluss in den tropischen Anden zeigen deutliche regionale und saisonale Variationen, insbesondere unter einem Szenario mit hoher Erwärmung gegen Ende des Jahrhunderts. Diese Projektionen deuten auf ganzjährige Zunahmen im Wasserertrag und Wasserabfluss in den Andenregionen und Rückgänge in den Tiefebenen des Amazonas hin, mit Ausnahmen wie im nördlichen Amazonasgebiet, wo Zunahmen während der Regenzeiten projektiert werden. Trotz dieser regionalen Unterschiede wird der jährliche Wasserabfluss des oberen Amazonas voraussichtlich im gesamten 21. Jahrhundert relativ stabil bleiben. Darüber hinaus deuten die Projektionen auf eine Abnahme der Niedrigabflüsse in den Tiefebenen des Amazonas und ein erhöhtes Risiko von Hochwasserabflüssen (Überschwemmungen) in den Anden- und nördlichen Amazonas-Einzugsgebieten hin. Diese Arbeit trägt erheblich zur Verbesserung der Datenlage bzgl. des Klimas in dieser Region bei, überwindet regionale Datenbegrenzungen, die zuvor hydrometeorologische Forschung behinderten, und schafft neue Möglichkeiten. Sie trägt zur Fortentwicklung der Kalibrierung hydrologischer Modelle bei, der Verbesserung der Darstellung interner hydrologischer Prozesse und damit der Erzielung hydrologisch konsistenter Simulationsergebnisse. Diese neuen Erkenntnisse zu den hydrologischen Dynamiken in den tropischen Anden sind grundlegend für eine verbesserte Bewirtschaftung der regionalen Wasserressourcen. Die erwartete Intensivierung des regionalen Wasserkreislaufs unter einem Szenario mit hoher Erwärmung unterstreichen die Dringlichkeit der Umsetzung von Maßnahmen zur Emissionsminderung und Anpassung, um den verstärkten Auswirkungen auf Wasserressourcen zu begegnen. Tatsächlich wurden die neuen Datensätze (RAIN4PE und BASD-CMIP6-PE) bereits von Forschern und Experten in regionalen und lokalen Projekten und Einzugsgebieten in Peru und Ecuador genutzt. Zum Beispiel wurden sie in Flusseinzugsgebieten wie Mantaro, Piura und San Pedro angewendet, um lokale historische und zukünftige Entwicklungen in Klima und Wasserressourcen zu analysieren. KW - hydrology KW - Hydrologie KW - tropical Andes KW - tropische Anden KW - climate change KW - Klimawandel KW - water resources KW - Wasserressourcen KW - RAIN4PE KW - RAIN4PE KW - BASD-CMIP6-PE KW - BASD-CMIP6-PE Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-656534 ER - TY - JOUR A1 - Stein, Lina A1 - Mukkavilli, Surya Karthik A1 - Wagener, Thorsten T1 - Lifelines for a drowning science - improving findability and synthesis of hydrologic publications JF - Hydrological processes N2 - Increasing publication numbers make it difficult to keep up with knowledge evolution in a science like hydrology. Here we give recommendations to authors and journals for writing future-proof articles that contribute to knowledge accumulation and synthesis. KW - findability KW - hydrology KW - knowledge synthesis KW - natural language processing KW - scholarly publishing KW - text mining Y1 - 2022 U6 - https://doi.org/10.1002/hyp.14742 SN - 0885-6087 SN - 1099-1085 VL - 36 IS - 11 PB - Wiley CY - New York, NY ER - TY - THES A1 - Schmidt, Lena Katharina T1 - Altered hydrological and sediment dynamics in high-alpine areas – Exploring the potential of machine-learning for estimating past and future changes N2 - Climate change fundamentally transforms glaciated high-alpine regions, with well-known cryospheric and hydrological implications, such as accelerating glacier retreat, transiently increased runoff, longer snow-free periods and more frequent and intense summer rainstorms. These changes affect the availability and transport of sediments in high alpine areas by altering the interaction and intensity of different erosion processes and catchment properties. Gaining insight into the future alterations in suspended sediment transport by high alpine streams is crucial, given its wide-ranging implications, e.g. for flood damage potential, flood hazard in downstream river reaches, hydropower production, riverine ecology and water quality. However, the current understanding of how climate change will impact suspended sediment dynamics in these high alpine regions is limited. For one, this is due to the scarcity of measurement time series that are long enough to e.g. infer trends. On the other hand, it is difficult – if not impossible – to develop process-based models, due to the complexity and multitude of processes involved in high alpine sediment dynamics. Therefore, knowledge has so far been confined to conceptual models (which do not facilitate deriving concrete timings or magnitudes for individual catchments) or qualitative estimates (‘higher export in warmer years’) that may not be able to capture decreases in sediment export. Recently, machine-learning approaches have gained in popularity for modeling sediment dynamics, since their black box nature tailors them to the problem at hand, i.e. relatively well-understood input and output data, linked by very complex processes. Therefore, the overarching aim of this thesis is to estimate sediment export from the high alpine Ötztal valley in Tyrol, Austria, over decadal timescales in the past and future – i.e. timescales relevant to anthropogenic climate change. This is achieved by informing, extending, evaluating and applying a quantile regression forest (QRF) approach, i.e. a nonparametric, multivariate machine-learning technique based on random forest. The first study included in this thesis aimed to understand present sediment dynamics, i.e. in the period with available measurements (up to 15 years). To inform the modeling setup for the two subsequent studies, this study identified the most important predictors, areas within the catchments and time periods. To that end, water and sediment yields from three nested gauges in the upper Ötztal, Vent, Sölden and Tumpen (98 to almost 800 km² catchment area, 930 to 3772 m a.s.l.) were analyzed for their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. The findings suggest that the areas situated above 2500 m a.s.l., containing glacier tongues and recently deglaciated areas, play a pivotal role in sediment generation across all sub-catchments. In contrast, precipitation events were relatively unimportant (on average, 21 % of annual sediment yield was associated to precipitation events). Thus, the second and third study focused on the Vent catchment and its sub-catchment above gauge Vernagt (11.4 and 98 km², 1891 to 3772 m a.s.l.), due to their higher share of areas above 2500 m. Additionally, they included discharge, precipitation and air temperature (as well as their antecedent conditions) as predictors. The second study aimed to estimate sediment export since the 1960s/70s at gauges Vent and Vernagt. This was facilitated by the availability of long records of the predictors, discharge, precipitation and air temperature, and shorter records (four and 15 years) of turbidity-derived sediment concentrations at the two gauges. The third study aimed to estimate future sediment export until 2100, by applying the QRF models developed in the second study to pre-existing precipitation and temperature projections (EURO-CORDEX) and discharge projections (physically-based hydroclimatological and snow model AMUNDSEN) for the three representative concentration pathways RCP2.6, RCP4.5 and RCP8.5. The combined results of the second and third study show overall increasing sediment export in the past and decreasing export in the future. This suggests that peak sediment is underway or has already passed – unless precipitation changes unfold differently than represented in the projections or changes in the catchment erodibility prevail and override these trends. Despite the overall future decrease, very high sediment export is possible in response to precipitation events. This two-fold development has important implications for managing sediment, flood hazard and riverine ecology. This thesis shows that QRF can be a very useful tool to model sediment export in high-alpine areas. Several validations in the second study showed good performance of QRF and its superiority to traditional sediment rating curves – especially in periods that contained high sediment export events, which points to its ability to deal with threshold effects. A technical limitation of QRF is the inability to extrapolate beyond the range of values represented in the training data. We assessed the number and severity of such out-of-observation-range (OOOR) days in both studies, which showed that there were few OOOR days in the second study and that uncertainties associated with OOOR days were small before 2070 in the third study. As the pre-processed data and model code have been made publically available, future studies can easily test further approaches or apply QRF to further catchments. N2 - Der Klimawandel verändert vergletscherte Hochgebirgsregionen grundlegend, mit wohlbekannten Auswirkungen auf Kryosphäre und Hydrologie, wie beschleunigtem Gletscherrückgang, vorübergehend erhöhtem Abfluss, längeren schneefreien Perioden und häufigeren und intensiveren sommerlichen Starkniederschlägen. Diese Veränderungen wirken sich auf die Verfügbarkeit und den Transport von Sedimenten in hochalpinen Gebieten aus, indem sie die Interaktion und Intensität verschiedener Erosionsprozesse und Einzugsgebietseigenschaften verändern. Eine Abschätzung der zukünftigen Veränderungen des Schwebstofftransports in hochalpinen Bächen ist von entscheidender Bedeutung, da sie weitreichende Auswirkungen haben, z. B. auf das Hochwasserschadenspotenzial, die Hochwassergefahr in den Unterläufen, sowie Wasserkraftproduktion, aquatische Ökosysteme und Wasserqualität. Das derzeitige Verständnis der Auswirkungen des Klimawandels auf die Schwebstoffdynamik in diesen hochalpinen Regionen ist jedoch begrenzt. Dies liegt zum einen daran, dass es kaum ausreichend lange Messzeitreihen gibt, um z.B. Trends ableiten zu können. Zum anderen ist es aufgrund der Komplexität und der Vielzahl der Prozesse, die an der hochalpinen Sedimentdynamik beteiligt sind, schwierig - wenn nicht gar unmöglich - prozessbasierte Modelle zu entwickeln. Daher beschränkte sich das Wissen bisher auf konzeptionelle Modelle (die es nicht ermöglichen, konkrete Zeitpunkte oder Größenordnungen für einzelne Einzugsgebiete abzuleiten) oder qualitative Schätzungen ("höherer Sedimentaustrag in wärmeren Jahren"), die möglicherweise nicht in der Lage sind, Rückgänge im Sedimentaustrag abzubilden. In jüngster Zeit haben Ansätze des maschinellen Lernens für die Modellierung der Sedimentdynamik an Popularität gewonnen, da sie aufgrund ihres Black-Box-Charakters auf das vorliegende Problem zugeschnitten sind, d. h. auf relativ gut verstandene Eingangs- und Ausgangsdaten, die durch sehr komplexe Prozesse verknüpft sind. Das übergeordnete Ziel dieser Arbeit ist daher die Abschätzung des Sedimentaustrags am Beispiel des hochalpinen Ötztals in Tirol, Österreich, auf dekadischen Zeitskalen in der Vergangenheit und Zukunft – also Zeitskalen, die für den anthropogenen Klimawandel relevant sind. Dazu wird ein Quantile Regression Forest (QRF)-Ansatz, d.h. ein nichtparametrisches, multivariates maschinelles Lernverfahren auf der Basis von Random Forest, erweitert, evaluiert und angewendet. Die erste Studie im Rahmen dieser Arbeit zielte darauf ab, die "gegenwärtige" Sedimentdynamik zu verstehen, d. h. in dem Zeitraum, für den Messungen vorliegen (bis zu 15 Jahre). Um die Modellierung für die beiden folgenden Studien zu ermöglichen, wurden in dieser Studie die wichtigsten Prädiktoren, Teilgebiete des Untersuchungsgebiets und Zeiträume ermittelt. Zu diesem Zweck wurden die Wasser- und Sedimenterträge von drei verschachtelten Pegeln im oberen Ötztal, Vent, Sölden und Tumpen (98 bis fast 800 km² Einzugsgebiet, 930 bis 3772 m ü.d.M.), auf ihre räumliche Verteilung, ihre Saisonalität und deren räumlichen Unterschiede, sowie die relative Bedeutung von Niederschlagsereignissen hin untersucht. Die Ergebnisse deuten darauf hin, dass die Gebiete oberhalb von 2500 m ü. M., in denen sich Gletscherzungen und kürzlich entgletscherte Gebiete befinden, eine zentrale Rolle in der Sedimentdynamik in allen Teileinzugsgebieten spielen. Im Gegensatz dazu waren Niederschlagsereignisse relativ unbedeutend (im Durchschnitt wurden 21 % des jährlichen Austrags mit Niederschlagsereignissen in Verbindung gebracht). Daher konzentrierten sich die zweite und dritte Studie auf das Vent-Einzugsgebiet und sein Teileinzugsgebiet oberhalb des Pegels Vernagt (11,4 und 98 km², 1891 bis 3772 m ü. M.), da sie einen höheren Anteil an Gebieten oberhalb von 2500 m aufweisen. Außerdem wurden Abfluss, Niederschlag und Lufttemperatur (sowie deren Vorbedingungen) als Prädiktoren einbezogen. Die zweite Studie zielte darauf ab, den Sedimentexport seit den 1960er/70er Jahren an den Pegeln Vent und Vernagt abzuschätzen. Dies wurde durch die Verfügbarkeit langer Aufzeichnungen der Prädiktoren Abfluss, Niederschlag und Lufttemperatur sowie kürzerer Aufzeichnungen (vier und 15 Jahre) von aus Trübungsmessungen abgeleiteten Sedimentkonzentrationen an den beiden Pegeln ermöglicht. Die dritte Studie zielte darauf ab, den zukünftigen Sedimentexport bis zum Jahr 2100 abzuschätzen, indem die in der zweiten Studie entwickelten QRF-Modelle auf bereits existierende Niederschlags- und Temperaturprojektionen (EURO-CORDEX) und Abflussprojektionen (des physikalisch basierten hydroklimatologischen und Schneemodells AMUNDSEN) in den drei repräsentativen Konzentrationspfaden RCP2.6, RCP4.5 und RCP8.5 angewendet wurden. Die kombinierten Ergebnisse der zweiten und dritten Studie legen nahe, dass der Sedimentexport in der Vergangenheit insgesamt zugenommen hat und in der Zukunft abnehmen wird. Dies deutet darauf hin, dass der Höhepunkt des Sedimenteintrags erreicht ist oder bereits überschritten wurde - es sei denn, die Niederschlagsveränderungen entwickeln sich anders, als es in den Projektionen dargestellt ist, oder Veränderungen in der Erodierbarkeit des Einzugsgebiets setzen sich durch. Trotz des allgemeinen Rückgangs in der Zukunft sind sehr hohe Sedimentausträge als Reaktion auf Niederschlagsereignisse möglich. Diese zweifältige Entwicklung hat wichtige Auswirkungen auf das Sedimentmanagement, die Hochwassergefahr und die Flussökologie. Diese Arbeit zeigt, dass QRF ein sehr nützliches Instrument zur Modellierung des Sedimentexports in hochalpinen Gebieten sein kann. Mehrere Validierungen in der zweiten Studie zeigten eine gute Modell-Performance und die Überlegenheit gegenüber traditionellen Sediment-Abfluss-Beziehungen – insbesondere in Zeiträumen, in denen es zu einem hohen Sedimentexport kam, was auf die Fähigkeit von QRF hinweist, mit Schwelleneffekten umzugehen. Eine technische Einschränkung von QRF ist die Unfähigkeit, über den Bereich der in den Trainingsdaten dargestellten Werte hinaus zu extrapolieren. Die Anzahl und den Schweregrad an solchen Tagen, in denen der Wertebereich der Trainingsdaten überschritten wurde, wurde in beiden Studien untersucht. Dabei zeigte sich, dass es in der zweiten Studie nur wenige solcher Tage gab und dass die mit den Überschreitungen verbundenen Unsicherheiten in der dritten Studie vor 2070 gering waren. Da die vorverarbeiteten Daten und der Modellcode öffentlich zugänglich gemacht wurden, können künftige Studien darauf aufbauend weitere Ansätze testen oder QRF auf weitere Einzugsgebiete anwenden. KW - suspended sediment KW - glacier melt KW - climate change KW - natural hazards KW - hydrology KW - geomorphology KW - Klimawandel KW - Geomorphologie KW - Gletscherschmelze KW - Hydrologie KW - Naturgefahren KW - suspendiertes Sediment Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-623302 ER - TY - THES A1 - Reich, Marvin T1 - Advances in hydrogravimetry T1 - Weiterentwicklung der Hydrogravimetrie BT - terrestrial gravimeters as field tools for hydrological applications BT - terrestrische Gravimeter als Messgeräte für hydrologische Anwendungen N2 - The interest of the hydrological community in the gravimetric method has steadily increased within the last decade. This is reflected by numerous studies from many different groups with a broad range of approaches and foci. Many of those are traditionally rather hydrology-oriented groups who recognized gravimetry as a potential added value for their hydrological investigations. While this resulted in a variety of interesting and useful findings, contributing to extend the respective knowledge and confirming the methodological potential, on the other hand, many interesting and unresolved questions emerged. This thesis manifests efforts, analyses and solutions carried out in this regard. Addressing and evaluating many of those unresolved questions, the research contributes to advancing hydrogravimetry, the combination of gravimetric and hydrological methods, in showing how gravimeters are a highly useful tool for applied hydrological field research. In the first part of the thesis, traditional setups of stationary terrestrial superconducting gravimeters are addressed. They are commonly installed within a dedicated building, the impermeable structure of which shields the underlying soil from natural exchange of water masses (infiltration, evapotranspiration, groundwater recharge). As gravimeters are most sensitive to mass changes directly beneath the meter, this could impede their suitability for local hydrological process investigations, especially for near-surface water storage changes (WSC). By studying temporal local hydrological dynamics at a dedicated site equipped with traditional hydrological measurement devices, both below and next to the building, the impact of these absent natural dynamics on the gravity observations were quantified. A comprehensive analysis with both a data-based and model-based approach led to the development of an alternative method for dealing with this limitation. Based on determinable parameters, this approach can be transferred to a broad range of measurement sites where gravimeters are deployed in similar structures. Furthermore, the extensive considerations on this topic enabled a more profound understanding of this so called umbrella effect. The second part of the thesis is a pilot study about the field deployment of a superconducting gravimeter. A newly developed field enclosure for this gravimeter was tested in an outdoor installation adjacent to the building used to investigate the umbrella effect. Analyzing and comparing the gravity observations from both indoor and outdoor gravimeters showed performance with respect to noise and stable environmental conditions was equivalent while the sensitivity to near-surface WSC was highly increased for the field deployed instrument. Furthermore it was demonstrated that the latter setup showed gravity changes independent of the depth where mass changes occurred, given their sufficiently wide horizontal extent. As a consequence, the field setup suits monitoring of WSC for both short and longer time periods much better. Based on a coupled data-modeling approach, its gravity time series was successfully used to infer and quantify local water budget components (evapotranspiration, lateral subsurface discharge) on the daily to annual time scale. The third part of the thesis applies data from a gravimeter field deployment for applied hydrological process investigations. To this end, again at the same site, a sprinkling experiment was conducted in a 15 x 15 m area around the gravimeter. A simple hydro-gravimetric model was developed for calculating the gravity response resulting from water redistribution in the subsurface. It was found that, from a theoretical point of view, different subsurface water distribution processes (macro pore flow, preferential flow, wetting front advancement, bypass flow and perched water table rise) lead to a characteristic shape of their resulting gravity response curve. Although by using this approach it was possible to identify a dominating subsurface water distribution process for this site, some clear limitations stood out. Despite the advantage for field installations that gravimetry is a non-invasive and integral method, the problem of non-uniqueness could only be overcome by additional measurements (soil moisture, electric resistivity tomography) within a joint evaluation. Furthermore, the simple hydrological model was efficient for theoretical considerations but lacked the capability to resolve some heterogeneous spatial structures of water distribution up to a needed scale. Nevertheless, this unique setup for plot to small scale hydrological process research underlines the high potential of gravimetery and the benefit of a field deployment. The fourth and last part is dedicated to the evaluation of potential uncertainties arising from the processing of gravity observations. The gravimeter senses all mass variations in an integral way, with the gravitational attraction being directly proportional to the magnitude of the change and inversely proportional to the square of the distance of the change. Consequently, all gravity effects (for example, tides, atmosphere, non-tidal ocean loading, polar motion, global hydrology and local hydrology) are included in an aggregated manner. To isolate the signal components of interest for a particular investigation, all non-desired effects have to be removed from the observations. This process is called reduction. The large-scale effects (tides, atmosphere, non-tidal ocean loading and global hydrology) cannot be measured directly and global model data is used to describe and quantify each effect. Within the reduction process, model errors and uncertainties propagate into the residual, the result of the reduction. The focus of this part of the thesis is quantifying the resulting, propagated uncertainty for each individual correction. Different superconducting gravimeter installations were evaluated with respect to their topography, distance to the ocean and the climate regime. Furthermore, different time periods of aggregated gravity observation data were assessed, ranging from 1 hour up to 12 months. It was found that uncertainties were highest for a frequency of 6 months and smallest for hourly frequencies. Distance to the ocean influences the uncertainty of the non-tidal ocean loading component, while geographical latitude affects uncertainties of the global hydrological component. It is important to highlight that the resulting correction-induced uncertainties in the residual have the potential to mask the signal of interest, depending on the signal magnitude and its frequency. These findings can be used to assess the value of gravity data across a range of applications and geographic settings. In an overarching synthesis all results and findings are discussed with a general focus on their added value for bringing hydrogravimetric field research to a new level. The conceptual and applied methodological benefits for hydrological studies are highlighted. Within an outlook for future setups and study designs, it was once again shown what enormous potential is offered by gravimeters as hydrological field tools. N2 - Gravimetrie ist eine geophysikalische Methode, bei der Massen und deren Veränderungen beobachtet und gemessen werden. Die Messgeräte der Gravimetrie heißen Gravimeter. Wenn man diese Methode in der Erforschung von Wasser-relevanten Fragestellungen, Prozessen und Zuständen einsetzt (Hydrologie), spricht man auch von Hydrogravimetrie. Die vorliegende Dissertation beschäftigt sich damit wie diese hydrogravimetrische Methode für angewandte Forschung im Feld benutzt wird und weiterentwickelt werden kann. Zuerst wird thematisiert, wie konventionelle Aufbauten mit Gravimetern aussehen und was daran aus der hydrologischen Perspektive problematisch ist. Das Gebäude in dem sich das Gravimeter befindet, stellt eine große versiegelte Fläche dar, die es verhindert, dass in der direktem Umgebung natürliche Prozesse ablaufen. Das ist so problematisch, weil das Gravimeter besonders empfindlich auf Massänderungen in nächster räumlicher Nähe reagiert. Als Lösung wird mit Hilfe einer neuen Methode aufgezeigt, wie man unter Benutzung von traditionellen hydrologischen Messinstrumenten um das Gebäude herum diese verhinderten natürlichen Prozesse beschreiben kann. Darauf folgend wird anhand eines erfolgreich getesteten Aufbaus eines Gravimeters außerhalb von einem Gebäude, also direkt im Gelände, demonstriert, was solch eine Außeninstallation für einen großen Vorteil für die hydrologische Feldforschung mit sich bringt. Darüberhinaus wird gezeigt, dass dieser alternative Aufbau keinerlei Nachteile hinsichtlich Genauigkeit, Qualität, Rauschen oder Beherrschbarkeit von Umwelteinflüssen mit sich bringt, sondern vor allem die Empfindlichkeit für Messungen von Wassermassenänderungen in Oberflächennähe stark verbessert. Anhand eines Beregnungsexperiments auf der Fläche um dieses im Gelände installierten Gravimeters werden die Vorzüge der gravimetrischen Methode für die hydrologische Prozessforschung aufgezeigt. Verschiedene mögliche Ausbreitungen des verregneten Wassers im Untergrund können mittels dieser Methode charakterisiert und identifiziert werden. Im letzten Teil wird das Problem von Unsicherheiten besprochen, die aus der notwendigen Datenbearbeitung resultieren. Um die gravimetrischen Beobachtungen auf die Anteile zu reduzieren, die innerhalb einer Studie betrachtet werden sollen, müssen alle Komponenten die das Gravimeter misst, die aber die hydrologische Interpretation stören, beseitigt werden. Dabei handelt es sich vor allem um globale Komponenten wie Gezeiten, Luftdruckschwankungen, Gezeiten-unabhängige Meeresströmungen und globale Hydrologie. Es wird untersucht, welche Unsicherheiten bei deren Korrektur auftreten, wenn verschiedene Zeitintervalle von zu beobachtenden hydrologischen Signalen vorherrschen. Alle gewonnenen Resultate und Erfahrungen werden in einer gesamtheitlichen Betrachtung dahingehend diskutiert, wie die hydrogravimetrische Methode aufgrund dieser neuen Erkenntnisse verbessert und vorangebracht werden konnte. KW - hydrology KW - gravimetry KW - hydrogravimetry KW - fieldwork KW - hydrological modelling KW - geophysical methods KW - Feldarbeit KW - geophysikalische Methoden KW - Gravimetrie KW - Hydrogravimetrie KW - hydrologische Modellierung KW - Hydrologie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-604794 ER - TY - JOUR A1 - Marquart, Arnim A1 - Eldridge, David J. A1 - Geissler, Katja A1 - Lobas, Christoph A1 - Blaum, Niels T1 - Interconnected effects of shrubs, invertebrate-derived macropores and soil texture on water infiltration in a semi-arid savanna rangeland JF - Land degradation & development N2 - Many semi arid savannas are prone to degradation, caused for example, by overgrazing or extreme climatic events, which often lead to shrub encroachment. Overgrazing by livestock affects vegetation and infiltration processes by directly altering plant composition (selective grazing) or by impacting soil physical properties (trampling). Water infiltration is controlled by several parameters, such as macropores (created by soil-burrowing animals or plant roots) and soil texture, but their effects have mostly been studied in isolation. Here we report on a study, in which we conducted infiltration experiments to analyze the interconnected effects of invertebrate-created macropores, shrubs and soil texture (sandy soil and loamy sand) on infiltration in two Namibian rangelands. Using structural equation modeling, we found a direct positive effect of shrub size on infiltration and indirectly via invertebrate macropores on both soil types. On loamy sands this effect was even stronger, but additionally, invertebrate-created macropores became relevant as a direct driver of infiltration. Our results provide new insights into the effects of vegetation and invertebrates on infiltration under different soil textures. Pastoralists should use management strategies that maintain a heterogeneous plant community that supports soil fauna to sustain healthy soil water dynamics, particularly on soils with higher loam content. Understanding the fundamental functioning of soil water dynamics in drylands is critical because these ecosystems are water-limited and support the livelihoods of many cultures worldwide. KW - hydrology KW - infiltration KW - invertebrate macropores KW - shrub-encroachment KW - soil function KW - soil texture Y1 - 2020 U6 - https://doi.org/10.1002/ldr.3598 SN - 1085-3278 SN - 1099-145X VL - 31 IS - 16 SP - 2307 EP - 2318 PB - Wiley CY - Chichester, Sussex ER - TY - RPRT A1 - Huđek, Helena A1 - Žganec, Krešimir A1 - Pusch, Martin T. T1 - A review of hydropower dams in Southeast Europe BT - distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea T2 - Renewable & sustainable energy reviews N2 - Currently, Southeast Europe (SEE) is witnessing a boom in hydropower plant (HPP) construction, which has not even spared protected areas. As SEE includes global hotspots of aquatic biodiversity, it is expected that this boom will result in a more severe impact on biodiversity than that of other regions. A more detailed assessment of the environmental risks resulting from HPP construction would have to rely on the existence of nearby hydrological and biological monitoring stations. For this reason, we review the distribution and trends of HPPs in the area, as well as the availability of hydrological and biological monitoring data from national institutions useable for environmental impact assessment. Our analysis samples tributary rivers of the Danube in Slovenia, Croatia, Bosnia and Herzegovina, Serbia, and Montenegro, referred to hereafter as TRD rivers. Currently, 636 HPPs are operating along the course of TRD rivers, most of which are small (<1 MW). An additional 1315 HPPs are currently planned to be built, mostly in Serbia and in Bosnia and Herzegovina. As official monitoring stations near HPPs are rare, the impact of those HPPs on river flow, fish and macro-invertebrates is difficult to assess. This manuscript represents the first regional review of hydropower use and of available data sources on its environmental impact for an area outside of the Alps. We conclude that current hydrological and biological monitoring in TRD rivers is insufficient for an assessment of the ecological impacts of HPPs. This data gap also prevents an adequate assessment of the ecological impacts of planned HP projects, as well as the identification of appropriate measures to mitigate the environmental effects of existing HPPs. KW - renewable energy KW - environmental monitoring KW - water framework directive KW - environmental impact assessment KW - macroinvertebrates KW - fish KW - hydrology Y1 - 2020 U6 - https://doi.org/10.1016/j.rser.2019.109434 SN - 1364-0321 SN - 1879-0690 VL - 117 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Mooij, Wolf M. A1 - Trolle, Dennis A1 - Jeppesen, Erik A1 - Arhonditsis, George B. A1 - Belolipetsky, Pavel V. A1 - Chitamwebwa, Deonatus B. R. A1 - Degermendzhy, Andrey G. A1 - DeAngelis, Donald L. A1 - Domis, Lisette Nicole de Senerpont A1 - Downing, Andrea S. A1 - Elliott, J. Alex A1 - Fragoso Jr, Carlos Ruberto A1 - Gaedke, Ursula A1 - Genova, Svetlana N. A1 - Gulati, Ramesh D. A1 - Håkanson, Lars A1 - Hamilton, David P. A1 - Hipsey, Matthew R. A1 - ‘t Hoen, Jochem A1 - Hülsmann, Stephan A1 - Los, F. Hans A1 - Makler-Pick, Vardit A1 - Petzoldt, Thomas A1 - Prokopkin, Igor G. A1 - Rinke, Karsten A1 - Schep, Sebastiaan A. A1 - Tominaga, Koji A1 - Van Dam, Anne A. A1 - Van Nes, Egbert H. A1 - Wells, Scott A. A1 - Janse, Jan H. T1 - Challenges and opportunities for integrating lake ecosystem modelling approaches JF - Aquatic ecology N2 - A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models. KW - aquatic KW - food web dynamics KW - plankton KW - nutrients KW - spatial KW - lake KW - freshwater KW - marine KW - community KW - population KW - hydrology KW - eutrophication KW - global change KW - climate warming KW - fisheries KW - biodiversity KW - management KW - mitigation KW - adaptive processes KW - non-linear dynamics KW - analysis KW - bifurcation KW - understanding KW - prediction KW - model limitations KW - model integration Y1 - 2010 U6 - https://doi.org/10.1007/s10452-010-9339-3 SN - 1573-5125 SN - 1386-2588 VL - 44 SP - 633 EP - 667 PB - Springer Science + Business Media B.V. CY - Dordrecht ER - TY - GEN A1 - Mooij, Wolf M. A1 - Trolle, Dennis A1 - Jeppesen, Erik A1 - Arhonditsis, George B. A1 - Belolipetsky, Pavel V. A1 - Chitamwebwa, Deonatus B. R. A1 - Degermendzhy, Andrey G. A1 - DeAngelis, Donald L. A1 - Domis, Lisette Nicole de Senerpont A1 - Downing, Andrea S. A1 - Elliott, J. Alex A1 - Fragoso Jr., Carlos Ruberto A1 - Gaedke, Ursula A1 - Genova, Svetlana N. A1 - Gulati, Ramesh D. A1 - Håkanson, Lars A1 - Hamilton, David P. A1 - Hipsey, Matthew R. A1 - ‘t Hoen, Jochem A1 - Hülsmann, Stephan A1 - Los, F. Hans A1 - Makler-Pick, Vardit A1 - Petzoldt, Thomas A1 - Prokopkin, Igor G. A1 - Rinke, Karsten A1 - Schep, Sebastiaan A. A1 - Tominaga, Koji A1 - Van Dam, Anne A. A1 - Van Nes, Egbert H. A1 - Wells, Scott A. A1 - Janse, Jan H. T1 - Challenges and opportunities for integrating lake ecosystem modelling approaches T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1326 KW - aquatic KW - food web dynamics KW - plankton KW - nutrients KW - spatial KW - lake KW - freshwater KW - marine KW - community KW - population KW - hydrology KW - eutrophication KW - global change KW - climate warming KW - fisheries KW - biodiversity KW - management KW - mitigation KW - adaptive processes KW - non-linear dynamics KW - analysis KW - bifurcation KW - understanding KW - prediction KW - model limitations KW - model integration Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429839 SN - 1866-8372 IS - 1326 ER - TY - JOUR A1 - Ayzel, Georgy T1 - Deep neural networks in hydrology BT - the new generation of universal and efficient models BT - новое поколение универсальных и эффективных моделей JF - Vestnik of Saint Petersburg University. Earth Sciences N2 - For around a decade, deep learning - the sub-field of machine learning that refers to artificial neural networks comprised of many computational layers - modifies the landscape of statistical model development in many research areas, such as image classification, machine translation, and speech recognition. Geoscientific disciplines in general and the field of hydrology in particular, also do not stand aside from this movement. Recently, the proliferation of modern deep learning-based techniques and methods has been actively gaining popularity for solving a wide range of hydrological problems: modeling and forecasting of river runoff, hydrological model parameters regionalization, assessment of available water resources. identification of the main drivers of the recent change in water balance components. This growing popularity of deep neural networks is primarily due to their high universality and efficiency. The presented qualities, together with the rapidly growing amount of accumulated environmental information, as well as increasing availability of computing facilities and resources, allow us to speak about deep neural networks as a new generation of mathematical models designed to, if not to replace existing solutions, but significantly enrich the field of geophysical processes modeling. This paper provides a brief overview of the current state of the field of development and application of deep neural networks in hydrology. Also in the following study, the qualitative long-term forecast regarding the development of deep learning technology for managing the corresponding hydrological modeling challenges is provided based on the use of "Gartner Hype Curve", which in the general details describes a life cycle of modern technologies. N2 - В течение последнего десятилетия глубокое обучение - область машинного обучения, относящаяся к искусственным нейронным сетям, состоящим из множества вычислительных слоев, - изменяет ландшафт развития статистических моделей во многих областях исследований, таких как классификация изображений, машинный перевод, распознавание речи. Географические науки, а также входящая в их состав область исследования гидрологии суши, не стоят в стороне от этого движения. В последнее время применение современных технологий и методов глубокого обучения активно набирает популярность для решения широкого спектра гидрологических задач: моделирования и прогнозирования речного стока, районирования модельных параметров, оценки располагаемых водных ресурсов, идентификации факторов, влияющих на современные изменения водного режима. Такой рост популярности глубоких нейронных сетей продиктован прежде всего их высокой универсальностью и эффективностью. Представленные качества в совокупности с быстрорастущим количеством накопленной информации о состоянии окружающей среды, а также ростом доступности вычислительных средств и ресурсов, позволяют говорить о глубоких нейронных сетях как о новом поколении математических моделей, призванных если не заменить существующие решения, то значительно обогатить область моделирования геофизических процессов. В данной работе представлен краткий обзор текущего состояния области разработки и применения глубоких нейронных сетей в гидрологии. Также в работе предложен качественный долгосрочный прогноз развития технологии глубокого обучения для решения задач гидрологического моделирования на основе использования «кривой ажиотажа Гартнера», в общих чертах описывающей жизненный цикл современных технологий. T2 - Глубокие нейронные сети в гидрологии KW - deep neural networks KW - deep learning KW - machine learning KW - hydrology KW - modeling KW - глубокие нейронные сети KW - глубокое обучение KW - машинное обучение KW - гидрология KW - моделирование Y1 - 2021 U6 - https://doi.org/10.21638/spbu07.2021.101 SN - 2541-9668 SN - 2587-585X VL - 66 IS - 1 SP - 5 EP - 18 PB - Univ. Press CY - St. Petersburg ER - TY - THES A1 - Kemter, Matthias T1 - River floods in a changing world T1 - Flusshochwasser in einer sich ändernden Welt N2 - River floods are among the most devastating natural hazards worldwide. As their generation is highly dependent on climatic conditions, their magnitude and frequency are projected to be affected by future climate change. Therefore, it is crucial to study the ways in which a changing climate will, and already has, influenced flood generation, and thereby flood hazard. Additionally, it is important to understand how other human influences - specifically altered land cover - affect flood hazard at the catchment scale. The ways in which flood generation is influenced by climatic and land cover conditions differ substantially in different regions. The spatial variability of these effects needs to be taken into account by using consistent datasets across large scales as well as applying methods that can reflect this heterogeneity. Therefore, in the first study of this cumulative thesis a complex network approach is used to find 10 clusters of similar flood behavior among 4390 catchments in the conterminous United States. By using a consistent set of 31 hydro-climatological and land cover variables, and training a separate Random Forest model for each of the clusters, the regional controls on flood magnitude trends between 1960-2010 are detected. It is shown that changes in rainfall are the most important drivers of these trends, while they are regionally controlled by land cover conditions. While climate change is most commonly associated with flood magnitude trends, it has been shown to also influence flood timing. This can lead to trends in the size of the area across which floods occur simultaneously, the flood synchrony scale. The second study is an analysis of data from 3872 European streamflow gauges and shows that flood synchrony scales have increased in Western Europe and decreased in Eastern Europe. These changes are attributed to changes in flood generation, especially a decreasing relevance of snowmelt. Additionally, the analysis shows that both the absolute values and the trends of flood magnitudes and flood synchrony scales are positively correlated. If these trends persist in the future and are not accounted for, the combined increases of flood magnitudes and flood synchrony scales can exceed the capacities of disaster relief organizations and insurers. Hazard cascades are an additional way through which climate change can influence different aspects of flood hazard. The 2019/2020 wildfires in Australia, which were preceded by an unprecedented drought and extinguished by extreme rainfall that led to local flooding, present an opportunity to study the effects of multiple preceding hazards on flood hazard. All these hazards are individually affected by climate change, additionally complicating the interactions within the cascade. By estimating and analyzing the burn severity, rainfall magnitude, soil erosion and stream turbidity in differently affected tributaries of the Manning River catchment, the third study shows that even low magnitude floods can pose a substantial hazard within a cascade. This thesis shows that humanity is affecting flood hazard in multiple ways with spatially and temporarily varying consequences, many of which were previously neglected (e.g. flood synchrony scale, hazard cascades). To allow for informed decision making in risk management and climate change adaptation, it will be crucial to study these aspects across the globe and to project their trajectories into the future. The presented methods can depict the complex interactions of different flood drivers and their spatial variability, providing a basis for the assessment of future flood hazard changes. The role of land cover should be considered more in future flood risk modelling and management studies, while holistic, transferable frameworks for hazard cascade assessment will need to be designed. N2 - Flusshochwasser gehören zu den verheerendsten Naturkatastrophen weltweit. Ihre Entstehung hängt von klimatischen Bedingungen ab, weshalb vorhergesagt wird, dass sich ihre Magnituden und Häufigkeit durch den Klimawandel ändern werden. Daher ist es notwendig zu untersuchen, auf welche Art sich ein verändertes Klima - auch im Vergleich mit Effekten durch Landbedeckungsänderungen - auf Hochwasserentstehung und -gefahr auswirken könnte und das bereits getan hat. Diese kumulative Arbeit beleuchtet drei Teilaspekte dieses Themas. In der ersten Studie werden mittels maschinellen Lernens die wichtigsten Variablen entdeckt und untersucht, die die Änderungen von Hochwassermagnituden in 4390 Einzugsgebieten in den USA von 1960-2010 kontrolliert haben. Es wird gezeigt, dass Änderungen der Regenmengen der entscheidende Faktor waren, während Landnutzung regional von großer Bedeutung war. Die zweite Studie untersucht von 1960-2010 Änderungen in der Distanz innerhalb welcher Hochwasser in verschiedenen Flüssen gleichzeitig auftreten. Daten von 3872 europäischen Flusspegeln zeigen, dass sich die Fläche der gleichzeitigen Überflutung in Westeuropa vergrößert und in Osteuropa verkleinert hat, was auf abnehmende Relevanz der Schneeschmelze bei der Hochwasserentstehung zurückzuführen ist. Die dritte Studie behandelt die Auswirkungen kaskadierender Naturkatastrophen auf Hochwasser am Beispiel der australischen Waldbrände 2019/2020. Die Untersuchung der verschieden stark betroffenen Nebenflüsse des Manning River zeigt, dass in einer Naturgefahrenkaskade selbst gewöhnliche Hochwasser substantielle Auswirkungen haben können. Diese Arbeit zeigt, dass die Menschheit Hochwassergefahren auf verschiedene Arten und mit räumlich sowie zeitlich variablen Resultaten beeinflusst. Diese Aspekte müssen zukünftig global näher untersucht und ihre Entwicklung für die Zukunft modelliert werden, um fundierte Entscheidungen in Hochwasserschutz treffen zu können. Für Hochwassermagnituden und die Fläche gleichzeitiger Überflutung können hierfür die präsentierten Methoden adaptiert werden. KW - hydrology KW - climate change KW - flood KW - Hydrologie KW - Klimawandel KW - Hochwasser Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558564 ER -