TY - THES A1 - Dippel, Sandor T1 - Development of functional hydrogels for sensor applications T1 - Entwicklung funktionalisierter Hydrogele für Sensor Anwendungen N2 - In this work, a sensor system based on thermoresponsive materials is developed by utilizing a modular approach. By synthesizing three different key monomers containing either a carboxyl, alkene or alkyne end group connected with a spacer to the methacrylic polymerizable unit, a flexible copolymerization strategy has been set up with oligo ethylene glycol methacrylates. This allows to tune the lower critical solution temperature (LCST) of the polymers in aqueous media. The molar masses are variable thanks to the excurse taken in polymerization in ionic liquids thus stretching molar masses from 25 to over 1000 kDa. The systems that were shown shown to be effective in aqueous solution could be immobilized on surfaces by copolymerizing photo crosslinkable units. The immobilized systems were formulated to give different layer thicknesses, swelling ratios and mesh sizes depending on the demand of the coupling reaction. The coupling of detector units or model molecules is approached via reactions of the click chemistry pool, and the reactions are evaluated on their efficiency under those aspects, too. These coupling reactions are followed by surface plasmon resonance spectroscopy (SPR) to judge efficiency. With these tools at hand, Salmonella saccharides could be selectively detected by SPR. Influenza viruses were detected in solution by turbidimetry in solution as well as by a copolymerized solvatochromic dye to track binding via the changes of the polymers’ fluorescence by said binding event. This effect could also be achieved by utilizing the thermoresponsive behavior. Another demonstrator consists of the detection system bound to a quartz surface, thus allowing the virus detection on a solid carrier. The experiments show the great potential of combining the concepts of thermoresponsive materials and click chemistry to develop technically simple sensors for large biomolecules and viruses. N2 - Diese Arbeit befasst sich mit der Entwicklung von Sensorsystemen für biologische Analyten wie Bakterien und Viren. Die Sensoren beruhen auf thermoresponsiven Polymeren und die Entwicklung wird Schritt für Schritt ausgehend von der Monomersynthese dargelegt. Die Grundidee ist es alle Einzelschritte so modular wie möglich zu halten. Die Kopplungseinheiten für die späteren Erkennungsgruppen bestehen aus Carboxyl, Alken und Alkinfunktionalitäten, die zuerst mit einem Ethylenglycolspacer mit variabler Länge verknüpft werden und dann mit der polymerisierbaren Methylmethacrylatgruppe versehen werden. Diese koppelbaren Monomere werden mit Di- oder (Oligoethylenglycol)methacrylaten copolymerisiert. Je nach Verhältnis ist so auch die untere kritische Entmischungstemperatur (LCST) einstellbar. Mit der Erweiterung der Polymerisationstechnik um ionische Flüssigkeiten als Lösemittel lassen sich Molmassen von 25 bis über 1000 kDa einstellen. Um die Polymere funktionell zu erweitern, lassen sich auch benzophenonhaltige Monomere zur Vernetzung oder Immobilisierung copolymerisieren. Naphthalsäureimidhaltige Monomere wiederum dienen als Signaleinheit, da sie durch Verändern der Polarität ihrer Umgebung solvatochrom reagieren. Durch Aufschleudern und UV-Vernetzen lassen sich Gelschichten mit guter Schichtdickenkontrolle herstellen. Dabei sind die Substrate nur auf den jeweiligen Zweck beschränkt. Dank des Baukastenprinzips kann auch die Maschenweite oder der Quellgrad der Gele eingestellt werden. Die Polymere oder Hydrogele werden mit Hilfe von effizienten Reaktionen swe sogenannten „Click Chemie“ umgesetzt und die Reaktionen werden durchleuchtet, ob sie diesen Ansprüchen gerecht werden. Je nach Möglichkeit wird das Anknüpfen mittels Oberflächenplasmonenresonanzspektroskopie(SPR) verfolgt, so wie zum Beispiel die Kopplung eines Phagen-Oberflächenproteins und das selektive Binden eines Membransaccharids des Salmonellen Bakteriums. Influenza Viren werden selektiv mit Hilfe eines Erkennungspeptids gebunden und mit Hilfe von Trübungsspektroskopie bzw. dem thermoresponsiven Verhalten des Trägerpolymers nachgewiesen. Ein weiterer dargelegter Ansatz ist das Nachweisen von geringen Virenkonzentrationen mit Hilfe eines Hydrogels oder von Polymeren in Lösung, die jeweils mit einem solvatochromen Farbstoff ausgestattet sind, der auf die Umgebungsänderung durch den Virus reagiert. Die Experimente zeigen das große Potential von geschickt kombinierten thermoresponsiven Materialien, die mittels Funktionalisierung durch Click-Chemie zu technisch einfachen Nachweissystemen für Biomoleküle und sogar ganze Zellen entwickelt werden können. KW - biosensors KW - polymer synthesis KW - lower critical solution temperature KW - surface modification KW - smart materials KW - Biosensoren KW - Polymersynthese KW - untere kritische Entmischungstemperatur KW - schaltbare Materialien Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398252 ER - TY - JOUR A1 - Ast, Cindy A1 - Schmälzlin, Elmar A1 - Löhmannsröben, Hans-Gerd A1 - van Dongen, Joost T. T1 - Optical oxygen micro- and nanosensors for plant applications JF - Sensors N2 - Pioneered by Clark's microelectrode more than half a century ago, there has been substantial interest in developing new, miniaturized optical methods to detect molecular oxygen inside cells. While extensively used for animal tissue measurements, applications of intracellular optical oxygen biosensors are still scarce in plant science. A critical aspect is the strong autofluorescence of the green plant tissue that interferes with optical signals of commonly used oxygen probes. A recently developed dual-frequency phase modulation technique can overcome this limitation, offering new perspectives for plant research. This review gives an overview on the latest optical sensing techniques and methods based on phosphorescence quenching in diverse tissues and discusses the potential pitfalls for applications in plants. The most promising oxygen sensitive probes are reviewed plus different oxygen sensing structures ranging from micro-optodes to soluble nanoparticles. Moreover, the applicability of using heterologously expressed oxygen binding proteins and fluorescent proteins to determine changes in the cellular oxygen concentration are discussed as potential non-invasive cellular oxygen reporters. KW - oxygen sensor KW - biosensors KW - microsensors KW - nanosensors KW - endogenous sensor proteins KW - dual-frequency phase-modulation KW - phosphorescence quenching KW - plant science Y1 - 2012 U6 - https://doi.org/10.3390/s120607015 SN - 1424-8220 VL - 12 IS - 6 SP - 7015 EP - 7032 PB - MDPI CY - Basel ER -