TY - JOUR A1 - Herfurth, Christoph A1 - Voll, Dominik A1 - Buller, Jens A1 - Weiss, Jan A1 - Barner-Kowollik, Christopher A1 - Laschewsky, André T1 - Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (meth)acrylates JF - Journal of polymer science : A, Polymer chemistry N2 - We report on the controlled free radical homopolymerization of 1-ferrocenylethyl acrylate as well as of three new ferrocene bearing monomers, namely 4-ferrocenylbutyl acrylate, 2-ferrocenylamido-2-methylpropyl acrylate, and 4-ferrocenylbutyl methacrylate, by the RAFT technique. For comparison, the latter monomer was polymerized using ATRP, too. The ferrocene containing monomers were found to be less reactive than their analogues free of ferrocene. The reasons for the low polymerizability are not entirely clear. As the addition of free ferrocene to the reaction mixture did not notably affect the polymerizations, sterical hindrance by the bulky ferrocene moiety fixed on the monomers seems to be the most probable explanation. Molar masses found for 1-ferrocenylethyl acrylate did not exceed 10,000 g mol(-1), while for 4-ferrocenylbutyl (meth) acrylate molar masses of 15,000 g mol(-1) could be obtained. With PDIs as low as 1.3 in RAFT polymerization of the monomers, good control over the polymerization was achieved. KW - ferrocene KW - living radical polymerization (LRP) KW - monomers KW - radical addition fragmentation chain transfer (RAFT) KW - radical polymerization KW - redox polymers KW - synthesis Y1 - 2012 U6 - https://doi.org/10.1002/pola.24994 SN - 0887-624X VL - 50 IS - 1 SP - 108 EP - 118 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Weiss, Jan A1 - Li, Ang A1 - Wischerhoff, Erik A1 - Laschewsky, André T1 - Water-soluble random and alternating copolymers of styrene monomers with adjustable lower critical solution temperature JF - Polymer Chemistry N2 - Random copolymers of 4-vinylbenzyl tri(oxyethylene) and tetra(oxyethylene) ethers, as well as alternating copolymers of 4-vinylbenzyl methoxytetra(oxyethylene) ether and a series of N-substituted maleimides, were synthesised by conventional free radical polymerisation, reversible addition fragmentation chain transfer (RAFT) and atom transfer radical polymerisation (ATRP). Their thermosensitive behaviour in aqueous solution was studied by turbidimetry and dynamic light scattering. Depending on the copolymer composition, a LCST type phase transition was observed in water. The transition temperature of the obtained random as well as alternating copolymers could be varied within a broad temperature window. In the case of the random copolymers, transition temperatures could be easily fine-tuned, as they showed a linear dependence on the copolymer composition, and were additionally modified by the nature of the polymer end-groups. Alternating copolymers were extremely versatile for implementing a broad range of variations of the phase transition temperatures. Further, while alternating copolymers derived from 4-vinylbenzyl methoxytetra(oxyethylene) ether and maleimides with small hydrophobic side chains underwent macroscopic phase separation when dissolved in water and heated above their cloud point, the incorporation of maleimides bearing larger hydrophobic substituents resulted in the formation of mesoglobules above the phase transition temperature, with hydrodynamic diameters of less than 100 nm. Y1 - 2012 U6 - https://doi.org/10.1039/c1py00422k SN - 1759-9954 VL - 3 IS - 2 SP - 352 EP - 361 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Weiss, Jan A1 - Laschewsky, André T1 - One-step synthesis of amphiphilic, double thermoresponsive diblock copolymers JF - Macromolecules : a publication of the American Chemical Society N2 - The copolymerization of an excess of a functionalized styrene monomer, 4-vinylbenzyl methoxytetrakis(oxyethylene) ether, with various N-substituted maleimides yields tapered diblock copolymers in a one-step procedure, when applying reversible deactivation radical polymerization (RDRP) methods, such as ATRP and RAFT. The particular chemical structure of the diblock copolymers prepared results in reversible temperature-responsive two-step aggregation behavior in dilute aqueous solution. In this way, a double hydrophilic block copolymer is transformed step by step into an amphiphilic macrosurfactant, and finally into a double hydrophobic copolymer, as followed by turbidimetry and dynamic light scattering. Copolymers in which the maleimide repeat units bear short hydrophobic side chains are freely water-soluble at low temperature and form micellar aggregates above their cloud point. Further heating above the phase transition temperature of the second block results in secondary aggregation. Copolymers with maleimides that bear strongly hydrophobic substituents undergo two thermally induced aggregation steps upon heating, too, but show in addition intramolecular hydrophobic association in water already at low temperatures, similar to the behavior of polysoaps. Y1 - 2012 U6 - https://doi.org/10.1021/ma300285y SN - 0024-9297 VL - 45 IS - 10 SP - 4158 EP - 4165 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Laschewsky, André A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Skrabania, Katja A1 - Stahlhut, Frank A1 - Weiss, Jan A1 - Zehm, Daniel T1 - Molecularly designed polymer colloids From giant surfactants to multicompartment micelles T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2012 SN - 0065-7727 VL - 244 IS - 32 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Laschewsky, André A1 - Herfurth, Christoph A1 - Miasnikova, Anna A1 - Wieland, Christoph A1 - Wischerhoff, Erik A1 - Gradzielski, Michael A1 - de Molina, Paula Malo A1 - Weiss, Jan T1 - Stars and blocks tailoring polymeric rheology modifiers for aqueous media by controlled free radical polymerization T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2012 SN - 0065-7727 VL - 244 PB - American Chemical Society CY - Washington ER -