TY - JOUR A1 - Goldschmidt, Richard Janis A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Blinking chimeras in globally coupled rotators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - In globally coupled ensembles of identical oscillators so-called chimera states can be observed. The chimera state is a symmetry-broken regime, where a subset of oscillators forms a cluster, a synchronized population, while the rest of the system remains a collection of nonsynchronized, scattered units. We describe here a blinking chimera regime in an ensemble of seven globally coupled rotators (Kuramoto oscillators with inertia). It is characterized by a death-birth process, where a long-term stable cluster of four oscillators suddenly dissolves and is very quickly reborn with a new reshuffled configuration. We identify three different kinds of rare blinking events and give a quantitative characterization by applying stability analysis to the long-lived chaotic state and to the short-lived regular regimes that arise when the cluster dissolves. Y1 - 2019 U6 - https://doi.org/10.1063/1.5105367 SN - 1054-1500 SN - 1089-7682 VL - 29 IS - 7 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Clusella, Pau A1 - Politi, Antonio A1 - Rosenblum, Michael T1 - A minimal model of self-consistent partial synchrony T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 890 KW - synchronization KW - collective dynamics KW - coupled oscillators Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436266 SN - 1866-8372 IS - 890 ER - TY - JOUR A1 - Politi, Antonio A1 - Pikovskij, Arkadij A1 - Ullner, Ekkehard T1 - Chaotic macroscopic phases in one-dimensional oscillators JF - European physical journal special topics N2 - The connection between the macroscopic description of collective chaos and the underlying microscopic dynamics is thoroughly analysed in mean-field models of one-dimensional oscillators. We investigate to what extent infinitesimal perturbations of the microscopic configurations can provide information also on the stability of the corresponding macroscopic phase. In ensembles of identical one-dimensional dynamical units, it is possible to represent the microscopic configurations so as to make transparent their connection with the macroscopic world. As a result, we find evidence of an intermediate, mesoscopic, range of distances, over which the instability is neither controlled by the microscopic equations nor by the macroscopic ones. We examine a whole series of indicators, ranging from the usual microscopic Lyapunov exponents, to the collective ones, including finite-amplitude exponents. A system of pulse-coupled oscillators is also briefly reviewed as an example of non-identical phase oscillators where collective chaos spontaneously emerges. Y1 - 2017 U6 - https://doi.org/10.1140/epjst/e2017-70056-4 SN - 1951-6355 SN - 1951-6401 VL - 226 SP - 1791 EP - 1810 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Clusella, Pau A1 - Politi, Antonio A1 - Rosenblum, Michael T1 - A minimal model of self-consistent partial synchrony (vol 18, 093037, 2016) T2 - New journal of physics : the open-access journal for physics Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa722b SN - 1367-2630 VL - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Clusella, Pau A1 - Politi, Antonio A1 - Rosenblum, Michael T1 - A minimal model of self-consistent partial synchrony JF - NEW JOURNAL OF PHYSICS N2 - We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field. KW - synchronization KW - collective dynamics KW - coupled oscillators Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/9/093037 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Politi, Antonio A1 - Pikovskij, Arkadij A1 - Ullner, Ekkehard T1 - Chaotic macroscopic phases in one-dimensional oscillators T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The connection between the macroscopic description of collective chaos and the underlying microscopic dynamics is thoroughly analysed in mean-field models of one-dimensional oscillators. We investigate to what extent infinitesimal perturbations of the microscopic configurations can provide information also on the stability of the corresponding macroscopic phase. In ensembles of identical one-dimensional dynamical units, it is possible to represent the microscopic configurations so as to make transparent their connection with the macroscopic world. As a result, we find evidence of an intermediate, mesoscopic, range of distances, over which the instability is neither controlled by the microscopic equations nor by the macroscopic ones. We examine a whole series of indicators, ranging from the usual microscopic Lyapunov exponents, to the collective ones, including finite-amplitude exponents. A system of pulse-coupled oscillators is also briefly reviewed as an example of non-identical phase oscillators where collective chaos spontaneously emerges. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 721 KW - networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429790 SN - 1866-8372 IS - 721 ER - TY - JOUR A1 - Politi, Antonio A1 - Rosenblum, Michael T1 - Equivalence of phase-oscillator and integrate-and-fire models JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - A quantitative comparison of various classes of oscillators (integrate-and-fire, Winfree, and Kuramoto-Daido type) is performed in the weak-coupling limit for a fully connected network of identical units. An almost perfect agreement is found, with only tiny differences among the models. We also show that the regime of self-consistent partial synchronization is rather general and can be observed for arbitrarily small coupling strength in any model class. As a byproduct of our study, we are able to show that an integrate-and-fire model with a generic pulse shape can be always transformed into a similar model with delta pulses and a suitable phase response curve. Y1 - 2015 U6 - https://doi.org/10.1103/PhysRevE.91.042916 SN - 1539-3755 SN - 1550-2376 VL - 91 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Dynamic localization of Lyapunov vectors in space-time chaos N2 - We study the dynamics of Lyapunov vectors in various models of one-dimensional distributed systems with spacetime chaos. We demonstrate that the vector corresponding to the maximum exponent is always localized and the localization region wanders irregularly. This localization is explained by interpreting the logarithm of the Lyapunov vector as a roughening interface. We show that for many systems, the `interface' belongs to the Kardar-Parisi- Zhang universality class. Accordingly, we discuss the scaling behaviour of finite-size effects and self-averaging properties of the Lyapunov exponents. Y1 - 1998 ER - TY - JOUR A1 - Politi, Antonio A1 - Witt, Annette T1 - Fractal dimension of space-time chaos Y1 - 1999 ER - TY - JOUR A1 - Pikovskij, Arkadij A1 - Politi, Antonio T1 - Dynamic localization of Lyapunov vectors in Hamiltonian lattices Y1 - 2001 ER -