TY - GEN A1 - Halfpap, Stefan A1 - Schlosser, Rainer T1 - Workload-Driven Fragment Allocation for Partially Replicated Databases Using Linear Programming T2 - 2019 IEEE 35th International Conference on Data Engineering (ICDE) N2 - In replication schemes, replica nodes can process read-only queries on snapshots of the master node without violating transactional consistency. By analyzing the workload, we can identify query access patterns and replicate data depending to its access frequency. In this paper, we define a linear programming (LP) model to calculate the set of partial replicas with the lowest overall memory capacity while evenly balancing the query load. Furthermore, we propose a scalable decomposition heuristic to calculate solutions for larger problem sizes. While guaranteeing the same performance as state-of-the-art heuristics, our decomposition approach calculates allocations with up to 23% lower memory footprint for the TPC-H benchmark. KW - database replication KW - allocation problem KW - linear programming Y1 - 2019 SN - 978-1-5386-7474-1 SN - 978-1-5386-7475-8 U6 - https://doi.org/10.1109/ICDE.2019.00188 SN - 1084-4627 SN - 2375-026X SN - 1063-6382 SP - 1746 EP - 1749 PB - IEEE CY - New York ER -