TY - THES A1 - Otto, Christopher T1 - Numerical analysis of thermal, hydraulic and mechanical processes in the near- and far-field of underground coal gasification reactors T1 - Numerische Analyse von thermalen, hydraulischen und mechanischen Prozessen im Nah- und Fernfeld von Untertage-Kohlevergasungs-Reaktoren N2 - Die Untertagevergasung von Kohle (UTV) ermöglicht die Erschließung konventionell nicht förderbarer Kohleressourcen und bietet dadurch Potenzial zur Erhöhung der weltweiten Kohlereserven. Bei der in-situ Kohleumwandlung entsteht ein hochkalorisches Synthesegas, das elektrifiziert oder zur Gewinnung chemischer Rohstoffe und synthetischer Kraftstoffe eingesetzt werden kann. Neben den wirtschaftlichen Möglichkeiten, bestehen jedoch auch standort-spezifische Umweltgefährdungspotentiale durch Subsidenz und Schadstoffmigration von UTV-Rückständen in nutzbare Grundwasserleiter. Eine nachhaltige und effiziente UTV erfordert ein umfangreiches Verständnis der thermisch, hydraulisch und mechanisch gekoppelten Prozesse im UTV-Reaktornahbereich. Aufgrund der hohen Investitionskosten von UTV-Pilotanlagen, sind numerische Simulationen gekoppelter Prozesse von entscheidender Bedeutung für die Bewertung möglicher UTV-Umweltauswirkungen. Im Rahmen dieser Arbeit wird die UTV-induzierte Permeabilitätsveränderung, Erzeugung möglicher hydraulischer Kurzschlüsse benachbarter Reaktoren und Dynamik nicht-isothermer Multiphasenflüsse mit gekoppelten Simulationen analysiert. Die Simulationsergebnisse zeigen, dass eine Implementierung temperaturabhängiger thermo-mechanischer Gesteinsparameter nur für Untersuchungen von Permeabilitäts-änderungen im Reaktornachbereich notwendig ist. Die Ergebnisse erlauben somit eine recheneffiziente Realisierung von komplexen thermo-mechanisch gekoppelten Simulations-studien regionalskaliger Modelle mit konstanten Gesteinsparametern, bei nahezu gleichbleibender Ergebnisgenauigkeit, die zur Bewertung von UTV-Umweltgefährdungs-potenzialen beitragen. Simulationen zur Ausbildung hydraulischer Kurzschlüsse zwischen einzelnen UTV-Reaktoren auf regionaler Skala, verdeutlichen die Relevanz von geologischen Störungen an einem UTV-Standort, da diese durch Reaktivierung hydraulische Verbindungen induzieren und somit einen effizienten und nachhaltigen UTV-Betrieb negativ beeinträchtigen können. In diesem Zusammenhang kommt der Ausbildung einer Wasserdampfphase, der sogenannte „steam jacket“, im Hochtemperaturnahbereich von UTV-Reaktoren, als potenzielle Barriere zur Vermeidung von UTV-Schadstoffaustritten und zur potenziellen Minimierung von Energieverlusten eine entscheidende Bedeutung zu. Diese steam jackets entstehen durch evaporiertes Formationswasser und sind komplexe nicht-isotherme Multiphasenfluss-Phänomene. Für ein verbessertes Prozessverständnis dieser Multiphasenflüsse, wurde ein neuartiges Modellkonzept entwickelt, welches, validiert gegen Feldversuchsdaten, erstmals sowohl eine Quantifizierung als auch Prognose von Wasserflussraten in und aus einem UTV-Reaktor erlaubt. Die Ergebnisse der vorgelegten Doktorarbeit bilden eine wichtige Grundlage für eine erfolgreiche Integration gekoppelter thermo-hydro-mechanischer Simulationen in weiterführende Studien. Vor dem Hintergrund hoher UTV-Umweltgefährdungspotentiale, können diese zur verbesserten Bewertung und Minderung von UTV-Umweltauswirkungen beitragen, sowie die UTV-Effizienz nachhaltig optimieren. N2 - Underground coal gasification (UCG) has the potential to increase worldwide coal reserves by developing coal resources, currently not economically extractable by conventional mining methods. For that purpose, coal is combusted in situ to produce a high-calorific synthesis gas with different end-use options, including electricity generation as well as production of fuels and chemical feedstock. Apart from the high economic potentials, UCG may induce site‐specific environmental impacts, including ground surface subsidence and pollutant migration of UCG by-products into shallow freshwater aquifers. Sustainable and efficient UCG operation requires a thorough understanding of the coupled thermal, hydraulic and mechanical processes, occurring in the UCG reactor vicinity. The development and infrastructure costs of UCG trials are very high; therefore, numerical simulations of coupled processes in UCG are essential for the assessment of potential environmental impacts. Therefore, the aim of the present study is to assess UCG-induced permeability changes, potential hydraulic short circuit formation and non-isothermal multiphase fluid flow dynamics by means of coupled numerical simulations. Simulation results on permeability changes in the UCG reactor vicinity demonstrate that temperature-dependent thermo-mechanical parameters have to be considered in near-field assessments, only. Hence, far-field simulations do not become inaccurate, but benefit from increased computational efficiency when thermo-mechanical parameters are maintained constant. Simulations on potential hydraulic short circuit formation between single UCG reactors at regional-scale emphasize that geologic faults may induce hydraulic connections, and thus compromise efficient UCG operation. In this context, the steam jacket surrounding high-temperature UCG reactors plays a vital role in avoiding UCG by-products escaping into freshwater aquifers and in minimizing energy consumption by formation fluid evaporation. A steam jacket emerges in the close reactor vicinity due to phase transition of formation water and is a non-isothermal flow phenomenon. Considering this complex multiphase flow behavior, an innovative conceptual modeling approach, validated against field data, enables the quantification and prediction of UCG reactor water balances. The findings of this doctoral thesis provide an important basis for integration of thermo-hydro-mechanical simulations in UCG, required for the assessment and mitigation of its potential environmental impacts as well as optimization of its efficiency. KW - underground coal gasification KW - numerical simulation KW - non-isothermal multiphase flow KW - thermo-mechanical modeling KW - Untertage-Kohlevergasung KW - numerische Simulation KW - nichtisothermer Mehrphasenfluss KW - thermo-mechanische Modellierung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-404625 ER - TY - THES A1 - Li, Zhen T1 - Formation of Sub-Permafrost Methane Hydrate Reproduced by Numerical Modeling BT - Insights from LArge-scale Reservoir Simulator (LARS) to Mallik Site, Canadian Arctic N2 - Natural gas hydrates are ice-like crystalline compounds containing water cavities that trap natural gas molecules like methane (CH4), which is a potent greenhouse gas with high energy density. The Mallik site at the Mackenzie Delta in the Canadian Arctic contains a large volume of technically recoverable CH4 hydrate beneath the base of the permafrost. Understanding how the sub-permafrost hydrate is distributed can aid in searching for the ideal locations for deploying CH4 production wells to develop the hydrate as a cleaner alternative to crude oil or coal. Globally, atmospheric warming driving permafrost thaw results in sub-permafrost hydrate dissociation, releasing CH4 into the atmosphere to intensify global warming. It is therefore crucial to evaluate the potential risk of hydrate dissociation due to permafrost degradation. To quantitatively predict hydrate distribution and volume in complex sub-permafrost environments, a numerical framework was developed to simulate sub-permafrost hydrate formation by coupling the equilibrium CH4-hydrate formation approach with a fluid flow and transport simulator (TRANSPORTSE). In addition, integrating the equations of state describing ice melting and forming with TRANSPORTSE enabled this framework to simulate the permafrost evolution during the sub-permafrost hydrate formation. A modified sub-permafrost hydrate formation mechanism for the Mallik site is presented in this study. According to this mechanism, the CH4-rich fluids have been vertically transported since the Late Pleistocene from deep overpressurized zones via geologic fault networks to form the observed hydrate deposits in the Kugmallit–Mackenzie Bay Sequences. The established numerical framework was verified by a benchmark of hydrate formation via dissolved methane. Model calibration was performed based on laboratory data measured during a multi-stage hydrate formation experiment undertaken in the LArge scale Reservoir Simulator (LARS). As the temporal and spatial evolution of simulated and observed hydrate saturation matched well, the LARS model was therefore validated. This laboratory-scale model was then upscaled to a field-scale 2D model generated from a seismic transect across the Mallik site. The simulation confirmed the feasibility of the introduced sub-permafrost hydrate formation mechanism by demonstrating consistency with field observations. The 2D model was extended to the first 3D model of the Mallik site by using well-logs and seismic profiles, to investigate the geologic controls on the spatial hydrate distribution. An assessment of this simulation revealed the hydraulic contribution of each geological element, including relevant fault networks and sedimentary sequences. Based on the simulation results, the observed heterogeneous distribution of sub-permafrost hydrate resulted from the combined factors of the source-gas generation rate, subsurface temperature, and the permeability of geologic elements. Analysis of the results revealed that the Mallik permafrost was heated by 0.8–1.3 °C, induced by the global temperature increase of 0.44 °C and accelerated by Arctic amplification from the early 1970s to the mid-2000s. This study presents a numerical framework that can be applied to study the formation of the permafrost-hydrate system from laboratory to field scales, across timescales ranging from hours to millions of years. Overall, these simulations deepen the knowledge about the dominant factors controlling the spatial hydrate distribution in sub-permafrost environments with heterogeneous geologic elements. The framework can support improving the design of hydrate formation experiments and provide valuable contributions to future industrial hydrate exploration and exploitation activities. N2 - Gashydrate sind eisähnliche kristalline Verbindungen, die Moleküle wie Methan (CH4) in Hohlräumen einschließen. Die Mallik-Lagerstätte im Mackenzie-Delta in der kanadischen Arktis enthält ein großes Volumen an technisch förderbarem CH4-Hydrat unter dem Permafrostboden. Das Verständnis, wie die Hydrate verteilt sind, kann bei der Suche nach idealen Standorten für Förderbohrungen zu ihrer Erschließung als saubere Alternative zu Erdöl oder Kohle helfen. Weltweit führt die Erwärmung der Atmosphäre zum Auftauen des Permafrosts und zur Zersetzung der Hydrate, wodurch CH4 in die Atmosphäre freigesetzt und die globale Erwärmung verstärkt wird. Es ist also entscheidend, das potenzielle Risiko der Hydratauflösung aufgrund der Permafrostdegradation zu bewerten. Um die Verteilung und das Volumen von Hydraten in komplexen Sub-Permafrost Umgebungen quantitativ vorherzusagen, wurde ein numerischer Ansatz zur Simulation entwickelt. Hierzu wurde der Gleichgewichtsansatz für die CH4-Hydratbildung mit einem Strömungs- und Transportsimulator (TRANSPORTSE) kombiniert. Die zusätzliche Integrierung der Zustandsgleichungen, die das Schmelzen und die Bildung von Eis beschreiben, ermöglichte die Simulation der Permafrostentwicklung während der Hydratbildung. Für den Standort Mallik wird ein modifizierter Bildungsmechanismus in dieser Studie beschrieben. Demzufolge wurden die CH4-reichen Fluide seit dem späten Pleistozän aus tiefen Überdruckszonen vertikal über geologische Verwerfungssysteme transportiert, und haben die Hydratvorkommen gebildet. Der numerische Ansatz wurde anhand eines Benchmarks zur Hydratbildung verifiziert. Messdaten eines mehrstufigen Hydratbildungsexperiments im LArge scale Reservoir Simulator (LARS) dienten zur Kalibrierung. Basierend auf der guten Übereinstimmung zwischen der simulierten und beobachteten Hydratsättigung, wurde das LARS-Modell validiert. Im Anschluss erfolgte die Übertragung auf ein 2D-Modell im Feldmaßstab, das mithilfe einer seismischen Transekte durch den Mallik-Standort erstellt wurde. Die Übereinstimmung mit den Feldbeobachtungen bestätigte den beschriebenen Mechanismus zur Hydratbildung unterhalb des Permafrosts. Das 2D-Modell wurde basierend auf Bohrlochprotokollen und seismischen Profilen zum ersten 3D-Modell des Mallik-Standorts erweitert, um die geologischen Einflüsse auf die Hydratverteilung zu untersuchen. Die Auswertung verdeutlichte den Beitrag jedes geologischen Elements zum hydraulischen System, einschließlich relevanter Verwerfungssysteme und sedimentärer Abfolgen. Die beobachtete heterogene räumliche Verteilung der Hydrate ist auf die Gasproduktionsrate der Quelle, die Untergrundtemperatur und die Durchlässigkeit der geologischen Einheiten zurückzuführen. Die Analyse der Ergebnisse ergab, dass der Mallik-Permafrost um 0,8–1,3 °C erwärmt wurde, was durch den globalen Temperaturanstieg von 0,44 °C verursacht und durch die sogenannte polare Verstärkung seit Anfang der 1970er bis Mitte der 2000er Jahre beschleunigt wurde. Der in dieser Studie entwickelte numerische Ansatz zur Bildung von Permafrost-Hydrat-Systemen kann vom Labor- bis zum Feldmaßstab und über Zeitskalen von Stunden bis zu Millionen von Jahren angewendet werden. Mit den Simulationen konnten die dominierenden Faktoren identifiziert werden, welche die räumliche Hydratverteilung in Umgebungen mit heterogenen geologischen Strukturen steuern. Der Ansatz kann die Planung von Hydratbildungsexperimenten verbessern und einen wertvollen Beitrag für zukünftige industrielle Hydraterkundungen- und -erschließungen leisten. T2 - Bildung von Sub-Permafrost-Methanhydraten dargestellt durch numerische Modellierung: Erkenntnisse aus dem LArge-sclae Reservoir Simulator (LARS), angewandt auf den Mallik-Standort, Kanadische Arktis KW - methane hydrate KW - geologic fault KW - numerical simulation KW - hydrate formation KW - climate change KW - Mackenzie Delta KW - Mackenzie-Delta KW - Klimawandel KW - geologische Verwerfung KW - Hydratbildung KW - Methanhydrat KW - numerische Simulation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-603302 ER -