TY - THES A1 - Koikkarah Aji, Amit T1 - Quantitative sub cellular characterization of Hantavirus structural proteins T1 - Quantitativ Subzellulär Charakterisierung Von Hantavirus-Strukturproteine. N2 - Hantaviruses (HVs) are a group of zoonotic viruses that infect human beings primarily through aerosol transmission of rodent excreta and urine samplings. HVs are classified geographically into: Old World HVs (OWHVs) that are found in Europe and Asia, and New World HVs (NWHVs) that are observed in the Americas. These different strains can cause severe hantavirus diseases with pronounced renal syndrome or severe cardiopulmonary system distress. HVs can be extremely lethal, with NWHV infections reaching up to 40 % mortality rate. HVs are known to generate epidemic outbreaks in many parts of the world including Germany, which has seen periodic HV infections over the past decade. HV has a trisegmented genome. The small segment (S) encodes the nucleocapsid protein (NP), the middle segment (M) encodes the glycoproteins (GPs) Gn and Gc which forms up to tetramers and primarily monomers \& dimers upon independent expression respectively and large segment (L) encodes RNA dependent RNA polymerase (RdRp). Interactions between these viral proteins are crucial in providing mechanistic insights into HV virion development. Despite best efforts, there continues to be lack of quantification of these associations in living cells. This is required in developing the mechanistic models for HV viral assembly. This dissertation focuses on three key questions pertaining to the initial steps of virion formation that primarily involves the GPs and NP. The research investigations in this work were completed using Fluorescence Correlation Spectroscopy (FCS) approaches. FCS is frequently used in assessing the biophysical features of bio-molecules including protein concentration and diffusion dynamics and circumvents the requirement of protein overexpression. FCS was primarily applied in this thesis to evaluate protein multimerization, at single cell resolution. The first question addressed which GP spike formation model proposed by Hepojoki et al.(2010) appropriately describes the evidence in living cells. A novel in cellulo assay was developed to evaluate the amount of fluorescently labelled and unlabeled GPs upon co-expression. The results clearly showed that Gn and Gc initially formed a heterodimeric Gn:Gc subunit. This sub-unit then multimerizes with congruent Gn:Gc subunits to generate the final GP spike. Based on these interactions, models describing the formation of GP complex (with multiple GP spike subunits) were additionally developed. HV GP assembly primarily takes place in the Golgi apparatus (GA) of infected cells. Interestingly, NWHV GPs are hypothesized to assemble at the plasma membrane (PM). This led to the second research question in this thesis, in which a systematic comparison between OWHV and NWHV GPs was conducted to validate this hypothesis. Surprisingly, GP localization at the PM was congruently observed with OWHV and NWHV GPs. Similar results were also discerned with OWHV and NWHV GP localization in the absence of cytoskeletal factors that regulate HV trafficking in cells. The final question focused on quantifying the NP-GP interactions and understanding their influence of NP and GP multimerization. Gc mutlimers were detected in the presence of NP and complimented by the presence of localized regions of high NP-Gc interactions in the perinuclear region of living cells. Gc-CT domain was shown to influence NP-Gc associations. Gn, on the other hand, formed up to tetrameric complexes, independent from the presence of NP. The results in this dissertation sheds light on the initial steps of HV virion formation by quantifying homo and heterotypic interactions involving NP and GPs, which otherwise are very difficult to perform. Finally, the in cellulo methodologies implemented in this work can be potentially extended to understand other key interactions involved in HV virus assembly. N2 - Hantaviren (HVs) gehören zu einer Gruppe von Zoonosenviren, die den Menschen hauptsächlich über Aerosolübertragung von Nagetierausscheidungen und Urinproben infizieren. HVs werden geografisch unterteilt in: Alte Welt-HVs (OWHVs), die in Europa und Asien vorkommen, und Neue Welt-HVs (NWHVs), die auf dem amerikanischen Kontinent beobachtet werden. Diese verschiedenen Stämme können schwere Krankheiten verursachen, wie hämorrhagisches Fieber mit Nierensyndrom oder schwere Herz-Lungen-Störungen. HVs haben eine hohe Sterblichkeitsrate, wobei NWHV-Infektionen eine Sterblichkeitsrate von bis zu 40 % erreichen. Es ist bekannt, dass HVs in vielen Teilen der Welt epidemische Ausbrüche verursachen können, so auch in Deutschland, wo in den letzten zehn Jahren regelmäßig HV-Infektionen vorkamen. HV besitzt ein trisegmentiertes Genom. Das kleine Segment (S) kodiert das Nukleokapsidprotein (NP), das mittlere Segment (M) kodiert die Glykoproteine (GPs) Gn und Gc, die bei unabhängiger Expression Tetramere und Dimere bilden, und das große Segment (L) kodiert die RNA-abhängige RNA-Polymerase (RdRp). Die Wechselwirkungen zwischen diesen viralen Proteinen sind von entscheidender Bedeutung für die Aufklärung der Mechanismen der HV-entwicklung. Trotz aller Bemühungen fehlt es nach wie vor an der Quantifizierung dieser Verbindungen in lebenden Zellen. Dies ist für die Entwicklung komplexer Modelle für den Aufbau von HV erforderlich. Diese Arbeit konzentriert sich auf drei Schlüsselfragen im Zusammenhang mit den ersten Phasen der Virionenbildung, an denen hauptsächlich die GPs und NP beteiligt sind. Die Forschungsaufgaben in dieser Arbeit wurden mit Hilfe der Fluoreszenzkorrelationspektroskopie (FCS) untersucht. Die FCS wird häufig zur Bewertung der biophysikalischen Eigenschaften von Biomolekülen, einschließlich der Proteinkonzentration und Diffusionsdynamik, eingesetzt und macht eine Überexpression von Proteinen überflüssig. In dieser Arbeit wurde FFS in erster Linie eingesetzt, um die Multimerisierung von Proteinen bei Einzelzellauflösung zu untersuchen. Die erste Frage lautete, welches das von Hepojoki et al. (2010) vorgeschlagene Modell der GP-Spike-Bildung den Vorgang in lebenden Zellen adäquat beschreibt. Es wurde ein neuartiger in cellulo-Assay entwickelt, um die Konzentration von fluoreszenzmarkierten und unmarkierten GPs bei der Ko-expression zu bestimmen. Die Ergebnisse zeigten deutlich, dass Gn und Gc zunächst eine heterodimere Gn:Gc-Untereinheit bilden. Diese Untereinheit multimerisiert dann mit kongruenten Gn:Gc-Untereinheiten, um den finalen GP-Spike zu erzeugen. Auf der Grundlage dieser Interaktionen wurden zusätzlich Modelle entwickelt, die die Bildung des GP-Komplexes (mit mehreren GP-Spike-Untereinheiten) beschreiben. Die HV-GP-Assemblierung findet hauptsächlich im Golgi-Apparat (GA) von infizierten Zellen statt. Interessanterweise wird angenommen, dass NWHV GPs an der Plasmamembran (PM) assembliert werden. Dies führte zur zweiten Frage dieser Arbeit, bei der ein systematischer Vergleich zwischen OWHV- und NWHV-GP durchgeführt wurde, um diese Hypothese zu bestätigen. Überraschenderweise wurde die GP-Lokalisierung an der PM bei OWHV- und NWHV-GPs gleichermaßen beobachtet. Ähnliche Ergebnisse wurden auch bei der Lokalisierung von OWHV- und NWHV-GP in Abwesenheit von zytoskelettalen Faktoren festgestellt, die die HV-Infektion regulieren. Die letzte Frage dieser Arbeit konzentrierte sich auf die Quantifizierung der NP-GP-Wechselwirkungen und das Verständnis ihres Einflusses auf die Multimerisierung von NP und GPs. Gc-Multimere, die in Gegenwart von NP nachgewiesen wurden, wurden durch das Vorhandensein von perinukleär lokalisierten Regionen mit starken NP-Gc-Wechselwirkungen in lebenden Zellen komplettiert. Es wurde gezeigt, dass die Gc-CT-Domäne die NP-Gc-Assoziationen beeinflusst. Gn hingegen bildete unabhängig von der Anwesenheit von NP tetramerische Komplexe. Die Ergebnisse dieser Arbeit geben Aufschluss über die ersten Phasen der HV-Assemblierung, indem sie die Homo- und Hetero-Interaktionen zwischen NP und GPs quantifizieren, was sonst nur sehr schwer möglich ist. Schließlich können die in dieser Arbeit implementierten in cellulo-Methoden potenziell erweitert werden, um andere Schlüsselinteraktionen zu verstehen, die an der HV-Assemblierung beteiligt sind. KW - Hantavirus KW - fluorescence microscopy KW - fluorescence correlation spectroscopy KW - protein multimerization KW - virus assembly KW - single cell imaging KW - Hantaviren KW - Fluoreszenzmikroskopie KW - Fluoreszenzkorrelationspektroskopie KW - Virionenbildung KW - Proteinmultimerisierung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-586612 ER - TY - THES A1 - Luschtinetz, Franziska T1 - Cyaninfarbstoffe als Fluoreszenzsonden in biomimetischen und biologischen Systemen : Fluoreszenz-Korrelations-Spektroskopie und Fluoreszenzanisotropie-Untersuchungen T1 - Cyanine dyes as fluorescent probes in biomimetic and biological systems : fluorescence correlation spectroscopy and fluorescence anisotropy studies N2 - Um Prozesse in biologischen Systemen auf molekularer Ebene zu untersuchen, haben sich vor allem fluoreszenzspektroskopische Methoden bewährt. Die Möglichkeit, einzelne Moleküle zu beobachten, hat zu einem deutlichen Fortschritt im Verständnis von elementaren biochemischen Prozessen geführt. Zu einer der bekanntesten Methoden der Einzelmolekülspektroskopie zählt die Fluoreszenz-Korrelations-Spektroskopie (FCS), mit deren Hilfe intramolekulare und diffusionsgesteuerte Prozesse in einem Zeitbereich von µs bis ms untersucht werden können. Durch die Verwendung von sog. Fluoreszenzsonden können Informationen über deren molekulare Mikroumgebung erhalten werden. Insbesondere für die konfokale Mikroskopie und die Einzelmolekülspektroskopie werden Fluoreszenzfarbstoffe mit einer hohen Photostabilität und hohen Fluoreszenzquantenausbeute benötigt. Aufgrund ihrer hohen Fluoreszenzquantenausbeute und der Möglichkeit, maßgeschneiderte“ Farbstoffe in einem breiten Spektralbereich für die Absorption und Fluoreszenz zu entwickeln, sind Cyaninfarbstoffe von besonderem Interesse für bioanalytische Anwendungen. Als Fluoreszenzmarker finden diese Farbstoffe insbesondere in der klinischen Diagnostik und den Lebenswissenschaften Verwendung. Die in dieser Arbeit verwendeten Farbstoffe DY-635 und DY-647 sind zwei typische Vertreter dieser Farbstoffklasse. Durch Modifizierung können die Farbstoffe kovalent an biologisch relevante Moleküle gebunden werden. Aufgrund ihres Absorptionsmaximums oberhalb von 630nm werden sie insbesondere in der Bioanalytik eingesetzt. In der vorliegenden Arbeit wurden die spektroskopischen Eigenschaften der Cyaninfarbstoffe DY-635 und DY-647 in biomimetischen und biologischen Modellsystemen untersucht. Zur Charakterisierung wurden dabei neben der Absorptionsspektroskopie insbesondere fluoreszenzspektroskopische Methoden verwendet. Dazu zählen die zeitkorrelierte Einzelphotonenzählung zur Ermittlung des Fluoreszenzabklingverhaltens, Fluoreszenz-Korrelations-Spektroskopie (FCS) zur Beobachtung von Diffusions- und photophysikalischen Desaktivierungsprozessen und die zeitaufgelöste Fluoreszenzanisotropie zur Untersuchung der Rotationsdynamik und Beweglichkeit der Farbstoffe im jeweiligen Modellsystem. Das Biotin-Streptavidin-System wurde als Modellsystem für die Untersuchung von Protein-Ligand-Wechselwirkungen verwendet, da der Bindungsmechanismus weitgehend aufgeklärt ist. Nach Bindung der Farbstoffe an Streptavidin wurde eine erhebliche Veränderung in den Absorptions- und Fluoreszenzeigenschaften beobachtet. Es wird angenommen, dass diese spektralen Veränderungen durch Wechselwirkung von benachbarten, an ein Streptavidintetramer gebundenen Farbstoffmolekülen und Bildung von H-Dimeren verursacht wird. Für das System Biotin-Streptavidin ist bekannt, dass während der Bindung des Liganden (Biotin) an das Protein eine Konformationsänderung auftritt. Anhand von zeitaufgelösten Fluoreszenzanisotropieuntersuchungen konnte in dieser Arbeit gezeigt werden, dass diese strukturellen Veränderungen zu einer starken Einschränkung der Beweglichkeit des Farbstoffes DY-635B führen. Liegt eine Mischung von ungebundenem und Streptavidin-gebundenem Farbstoff vor, können die Anisotropieabklingkurven nicht nach einem exponentiellen Verlauf angepasst werden. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass in diesem Fall die Auswertung mit Hilfe des Assoziativen Anisotropiemodells möglich ist, welches eine Unterscheidung der Beiträge aus den zwei verschiedenen Mikroumgebungen ermöglicht. Als zweites Modellsystem dieser Arbeit wurden Mizellen des nichtionischen Tensids Tween-20 eingesetzt. Mizellen bilden eines der einfachsten Systeme, um die Mikroumgebung einer biologischen Membran nachzuahmen. Sind die Farbstoffe in den Mizellen eingelagert, so kommt es zu keiner Veränderung der Mizellgröße. Die ermittelten Werte des Diffusionskoeffizienten der mizellar eingelagerten Farbstoffe spiegeln demzufolge die Translationsbewegung der Tween-20-Mizellen wider. Die Beweglichkeit der Farbstoffe innerhalb der Tween-20-Mizellen wurde durch zeitaufgelöste Fluoreszenzanisotropiemessungen untersucht. Neben der „Wackelbewegung“, entsprechend dem wobble-in-a-cone-Modell, wird zusätzlich noch die laterale Diffusion der Farbstoffe entlang der Mizelloberfläche beschrieben. N2 - To investigate processes in biological systems on a molecular level, particularly fluorescence spectroscopic methods have proven. The possibility to observe single molecules led to significant progress in the understanding of basic biochemical processes. Fluorescence correlation spectroscopy (FCS) is one of the most popular methods of single molecule spectroscopy and is a powerful technique for the investigation of intramolecular and diffusion-controlled processes on a µs to ms time scale. The photophysical characteristics of fluorescent probes are often strongly influenced by their microenvironment. For confocal microscopy and single molecule detection applications fluorescent dyes with properties, such as high photostability and high fluorescence efficiency are highly needed. Due to the high fluorescence efficiency and the high potential to design tailor-made fluorescence probes covering a wide spectral range in absorption and fluorescence, cyanine dyes are highly attractive as fluorescence probes for bioanalytical applications, such as clinical diagnostics and life sciences. The dyes DY-635 and DY-647 are two typical representatives of this class of dyes and can be covalently attached to biologically relevant molecules. Because of their excitation wavelength above 630nm these dyes are especially suited for bioanalytical applications. In this work the spectroscopic properties of DY-635 and DY-647 in biomimetic and biological model systems were studied by absorption and fluorescence spectroscopy techniques: time-correlated single photon counting to determine fluorescence decay behavior, fluorescence correlation spectroscopy (FCS) to observe diffusion and photophysical deactivation processes, and fluorescence anisotropy to study the mobility and rotational behavior of the dyes in the respective model system. The well characterized system biotin-streptavidin was used as a model system for protein-ligand interactions. Binding to streptavidin resulted in significant changes in the steady-state photophysical characteristics of DY-635B and DY-647. These spectral changes are attributed to dye-dye interactions and the formation of H-dimers. Previous studies have demonstrated, that binding of biotin alters the conformation of streptavidin. Based on the evaluation of time-resolved anisotropy data in this study it was shown that these structural changes result in strong hindrance of the rotational freedom of DY-635B. For mixtures of unbound and streptavidin-bound dyes the fluorescence anisotropy decay curves are found to be nonexponential. In this case the concept of an associated anisotropy were applied which allowed discrimination between contributions from different microenvironments. As a second model system, micelles of the nonionic surfactant Tween-20 were used. Micelles are one of the simplest systems to mimic the microenvironment of a biological membrane. Incorporation of the dyes had no effect on the micelle size. The diffusion coefficient of the dyes, obtained by fluorescence correlation spectroscopy (FCS), reflects the translational behavior of Tween-20 micelles. The mobility of the dyes in the Tween-20 micelles was studied by time-resolved fluorescence anisotropy. In addition to a „wobbling“ motion ccording to the wobble-in-a-cone model, a lateral diffusion of the dyes along the micelle surface is described. KW - Cyaninfarbstoffe KW - Fluoreszenz-Korrelations-Spektroskopie KW - Fluoreszenzanisotropie KW - Biotin-Streptavidin KW - Assoziatives Anisotropiemodell KW - cyanine dyes KW - fluorescence correlation spectroscopy KW - fluorescence anisotropy KW - biotin streptavidin KW - associated anisotropy Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-48478 ER -