TY - THES A1 - Siebler, Lara T1 - Identifying novel regulators of heat stress memory in Arabidopsis thaliana T1 - Identifikation neuer Regulatoren des Hitzestressgedächtnisses in Arabidopsis thaliana N2 - Heat stress (HS) is a major abiotic stress that negatively affects plant growth and productivity. However, plants have developed various adaptive mechanisms to cope with HS, including the acquisition and maintenance of thermotolerance, which allows them to respond more effectively to subsequent stress episodes. HS memory includes type II transcriptional memory which is characterized by enhanced re-induction of a subset of HS memory genes upon recurrent HS. In this study, new regulators of HS memory in A. thaliana were identified through the characterization of rein mutants. The rein1 mutant carries a premature stop in CYCLIN-DEPENDENT-KINASE 8 (CDK8) which is part of the cyclin kinase module of the Mediator complex. Rein1 seedlings show impaired type II transcriptional memory in multiple heat-responsive genes upon re-exposure to HS. Additionally, the mutants exhibit a significant deficiency in HS memory at the physiological level. Interaction studies conducted in this work indicate that CDK8 associates with the memory HEAT SHOCK FACTORs HSAF2 and HSFA3. The results suggest that CDK8 plays a crucial role in HS memory in plants together with other memory HSFs, which may be potential targets of the CDK8 kinase function. Understanding the role and interaction network of the Mediator complex during HS-induced transcriptional memory will be an exciting aspect of future HS memory research. The second characterized mutant, rein2, was selected based on its strongly impaired pAPX2::LUC re-induction phenotype. In gene expression analysis, the mutant revealed additional defects in the initial induction of HS memory genes. Along with this observation, basal thermotolerance was impaired similarly as HS memory at the physiological level in rein2. Sequencing of backcrossed bulk segregants with subsequent fine mapping narrowed the location of REIN2 to a 1 Mb region on chromosome 1. This interval contains the At1g65440 gene, which encodes the histone chaperone SPT6L. SPT6L interacts with chromatin remodelers and bridges them to the transcription machinery to regulate nucleosome and Pol II occupancy around the transcriptional start site. The EMS-induced missense mutation in SPT6L may cause altered HS-induced gene expression in rein2, possibly triggered by changes in the chromatin environment resulting from altered histone chaperone function. Expanding research on screen-derived factors that modify type II transcriptional memory has the potential to enhance our understanding of HS memory in plants. Discovering connections between previously identified memory factors will help to elucidate the underlying network of HS memory. This knowledge can initiate new approaches to improve heat resilience in crops. N2 - Hitzestress ist ein abiotischer Stressfaktor, der Pflanzenwachstum und Ertragsfähigkeit negativ beeinflusst. Pflanzen haben Anpassungsmechanismen entwickelt, einschließlich des Erwerbs und der Aufrechterhaltung von Thermotoleranz, die es ihnen ermöglichen auf wiederholte Stressereignisse effektiver zu reagieren. Das Hitzestress-Gedächtnis umfasst unter anderem verstärkte Re-Induktion von Gedächtnisgenen nach wiederholter Exposition (Typ II). In dieser Arbeit wurden anhand der Charakterisierung von Re-Induktionsmutanten (rein Mutanten) neue Regulatoren des Typ II Hitzestress-Gedächtnisses in A. thaliana identifiziert. Die rein1 Mutante weist ein vorzeitiges Stoppcodon in CDK8 auf, einer Untereinheit im Kinasemodul des Mediator Komplexes. Rein1 Keimlinge zeigen ein beeinträchtigtes Hitzstress-Transkriptionsgedächtnis, sowie Defekte in der Aufrechterhaltung der Thermotoleranz auf physiologischer Ebene. Mittels Interaktionsstudien konnte gezeigt werden, dass CDK8 mit den im Hitzestress-Gedächtnis fungierenden Hitzeschockfaktoren HSAF2 und HSFA3 interagiert. Die Ergebnisse legen nahe, dass CDK8 zusammen mit HSFs eine Rolle bei der Aufrechterhaltung des Hitzestress-Gedächtnisses spielt, wobei letztere potenzielle Ziele der Kinasefunktion von CDK8 darstellen. Die Rolle und das Interaktionsnetzwerk des Mediatorkomplexes während der durch Hitzstress-induzierten transkriptionellen Gedächtnis-bildung und Aufrechterhaltung ist ein aufregender Aspekt zukünftiger Forschung. Die zweite rein Mutante (rein2) wurde aufgrund einer stark beeinträchtigten transkriptionellen Re-Induktion nach wiederholtem Hitzestress für weitere Charakterisierungen ausgewählt. Dabei wurden zusätzliche Defekte in der initialen Induktion von Hitzestress-Gedächtnisgenen festgestellt. Die basale Thermotoleranz in rein2 war in ähnlicher Weise beeinträchtigt wie das Hitzestress-Gedächtnis. Die Position von REIN2 wurde mithilfe von Sequenzierung und Feinkartierung auf eine 1 Mb große Region auf Chromosom 1 eingegrenzt. Dieses Intervall enthält das Gen At1g65440, das für Histon-Chaperon SPT6L kodiert. Die Missense-Mutation in SPT6L könnte die Ursache für das veränderte Hitzestress-induzierte Transkriptionsmuster in rein2 sein, möglicherweise aufgrund von einer abweichenden Chaperonfunktion und folglich Veränderung in der Chromatinumgebung. Die Ausweitung der Forschung zu den in diesem Screening ermittelten Faktoren, die das Typ II Transkriptionsgedächtnis beeinflussen, hat das Potenzial, unser derzeitiges Verständnis des Hitzestress-Gedächtnisses in Pflanzen zu verbessern und Verbindungen zwischen zuvor entdeckten Gedächtnisregulatoren herzustellen. Dieses Wissen kann dazu beitragen neue Ansätze zur Verbesserung der Hitzeresilienz bei Nutzpflanzen anzustoßen. KW - epigenetics KW - heat stress KW - molecular biology KW - genetic screen KW - Epigenetik KW - Hitzestress KW - Molekularbiologie KW - genetischer Screen Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-634477 ER - TY - THES A1 - Eckert, Silvia T1 - Trait variation in changing environments: Assessing the role of DNA methylation in non-native plant species T1 - Merkmalsvariation in sich verändernden Umgebungen: Bewertung der Rolle der DNA-Methylierung bei nicht einheimischen Pflanzenarten N2 - The increasing introduction of non-native plant species may pose a threat to local biodiversity. However, the basis of successful plant invasion is not conclusively understood, especially since these plant species can adapt to the new range within a short period of time despite impoverished genetic diversity of the starting populations. In this context, DNA methylation is considered promising to explain successful adaptation mechanisms in the new habitat. DNA methylation is a heritable variation in gene expression without changing the underlying genetic information. Thus, DNA methylation is considered a so-called epigenetic mechanism, but has been studied in mainly clonally reproducing plant species or genetic model plants. An understanding of this epigenetic mechanism in the context of non-native, predominantly sexually reproducing plant species might help to expand knowledge in biodiversity research on the interaction between plants and their habitats and, based on this, may enable more precise measures in conservation biology. For my studies, I combined chemical DNA demethylation of field-collected seed material from predominantly sexually reproducing species and rearing offsping under common climatic conditions to examine DNA methylation in an ecological-evolutionary context. The contrast of chemically treated (demethylated) plants, whose variation in DNA methylation was artificially reduced, and untreated control plants of the same species allowed me to study the impact of this mechanism on adaptive trait differentiation and local adaptation. With this experimental background, I conducted three studies examining the effect of DNA methylation in non-native species along a climatic gradient and also between climatically divergent regions. The first study focused on adaptive trait differentiation in two invasive perennial goldenrod species, Solidago canadensis sensu latu and S. gigantea AITON, along a climate gradient of more than 1000 km in length in Central Europe. I found population differences in flowering timing, plant height, and biomass in the temporally longer-established S. canadensis, but only in the number of regrowing shoots for S. gigantea. While S. canadensis did not show any population structure, I was able to identify three genetic groups along this climatic gradient in S. gigantea. Surprisingly, demethylated plants of both species showed no change in the majority of traits studied. In the subsequent second study, I focused on the longer-established goldenrod species S. canadensis and used molecular analyses to infer spatial epigenetic and genetic population differences in the same specimens from the previous study. I found weak genetic but no epigenetic spatial variation between populations. Additionally, I was able to identify one genetic marker and one epigenetic marker putatively susceptible to selection. However, the results of this study reconfirmed that the epigenetic mechanism of DNA methylation appears to be hardly involved in adaptive processes within the new range in S. canadensis. Finally, I conducted a third study in which I reciprocally transplanted short-lived plant species between two climatically divergent regions in Germany to investigate local adaptation at the plant family level. For this purpose, I used four plant families (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae) and here I additionally compared between non-native and native plant species. Seeds were transplanted to regions with a distance of more than 600 kilometers and had either a temperate-oceanic or a temperate-continental climate. In this study, some species were found to be maladapted to their own local conditions, both in non-native and native plant species alike. In demethylated individuals of the plant species studied, DNA methylation had inconsistent but species-specific effects on survival and biomass production. The results of this study highlight that DNA methylation did not make a substantial contribution to local adaptation in the non-native as well as native species studied. In summary, my work showed that DNA methylation plays a negligible role in both adaptive trait variation along climatic gradients and local adaptation in non-native plant species that either exhibit a high degree of genetic variation or rely mainly on sexual reproduction with low clonal propagation. I was able to show that the adaptive success of these non-native plant species can hardly be explained by DNA methylation, but could be a possible consequence of multiple introductions, dispersal corridors and meta-population dynamics. Similarly, my results illustrate that the use of plant species that do not predominantly reproduce clonally and are not model plants is essential to characterize the effect size of epigenetic mechanisms in an ecological-evolutionary context. N2 - Die zunehmende Eintragung nicht-heimischer Pflanzenarten kann eine Gefahr für die lokale Artenvielfalt darstellen. Die Grundlagen einer erfolgreichen pflanzlichen Ausbreitung sind jedoch nicht abschließend geklärt, zumal sich diese Arten innerhalb kurzer Zeit an das neue Verbreitungsgebiet anpassen können trotz anfänglich reduzierter genetischer Vielfalt der Startpopulationen. In diesem Kontext gilt DNA-Methylierung als vielversprechend, um erfolgreiche Anpassungsmechanismen im neuen Lebensraum zu erklären. Bei der DNA-Methylierung handelt es sich um eine vererbbare Variation der Genaktivität, ohne dass die zugrundeliegende genetische Erbinformation verändert wird. Damit gehört DNA-Methylierung zu den sogenannten epigenetischen Mechanismen, wurde jedoch vorwiegend bei sich klonal vermehrenden Pflanzenarten oder genetischen Modellpflanzen untersucht. Ein Verständnis dieses epigenetischen Mechanismus im Zusammenhang mit nicht-einheimischen, sich vorwiegend sexuell reproduzierenden Pflanzenarten erweitert das Wissen in der Biodiversitätsforschung zur Interaktion zwischen Pflanzen und ihrem Lebensraum und kann, darauf aufbauend, präzisere Maßnahmen in der Naturschutzbiologie ermöglichen. Für meine Studien kombinierte ich die chemische DNA-Demethylierung von im Freiland gesammeltem Samenmaterial sich vorwiegend sexuell fortpflanzender Arten und die Aufzucht unter gemeinsamen klimatischen Bedingungen, um DNA-Methylierung im ökologisch-evolutionären Kontext zu untersuchen. Der Kontrast von chemisch behandelten (demethylierten) Pflanzen, deren Methylierungsvariation nun künstlich verringert war, und unbehandelten Kontrollpflanzen derselben Art ermöglichte mir die Auswirkung dieses Mechanismus auf adaptive Merkmalsvariationen und lokale Anpassung zu studieren. Vor diesem experimentellen Hintergrund führte ich drei Studien durch, um die Auswirkung von DNA-Methylierung bei nicht-einheimischen Pflanzenarten entlang eines klimatischen Gradienten und zwischen zwei klimatisch unterschiedlichen Regionen zu untersuchen. Die erste Studie konzentrierte sich auf adaptive Merkmalsveränderungen bei Nachkommen von zwei invasiven, mehrjährigen Goldrutenarten, Solidago canadensis sensu latu und S. gigantea AITON, entlang eines Klimagradienten von mehr als 1000 km Länge in Zentraleuropa. Ich fand graduelle Unterschiede im Blühzeitpunkt, in der Pflanzenhöhe und der Biomasse bei der zeitlich länger etablierten S. canadensis, bei S. gigantea jedoch nur in der Anzahl der nachwachsenden Triebe. Während S. canadensis keinerlei Populationsstruktur aufwies, konnte ich bei S. gigantea drei genetische Gruppen entlang dieses Klimagradienten identifizieren. Überraschenderweise zeigten demethylierte Pflanzen beider Arten keine Veränderung in der überwiegenden Anzahl der untersuchten Merkmale. In der darauffolgenden zweiten Studie konzentrierte ich mich auf die länger etablierte Goldrutenart S. canadensis und verwendete molekulare Analysen, um räumliche epigenetische und genetische Populationunterschiede aus den Exemplaren der vorhergehenden Studie abzuleiten. Ich fand schwache genetische aber keine epigenetische räumliche Variation zwischen den Populationen. Zusätzlich konnte ich einen genetischen und einen epigenetischen Marker identifizieren, welcher potentiell unter Selektion stehen könnte. Allerdings bestätigten die Ergebnisse dieser Studie erneut, dass DNA-Methylierung bei S. canadensis kaum in die Anpassung an das neue Verbreitungsgebiet involviert zu sein scheint. Schließlich führte ich eine dritte Studie durch, in welcher ich Samen kurzlebiger Pflanzenarten reziprok zwischen zwei klimatisch unterschiedlichen Regionen in Deutschland transplantierte, um lokale Anpassung auf Ebene der Pflanzenfamilien zu untersuchen. Zu diesem Zweck nutze ich vier Pflanzenfamilien (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae), wobei ich hier auch zwischen nicht-heimischen und heimischen Pflanzenarten verglich. Beide Regionen lagen mehr als 600 Kilometer voneinander entfernt und wiesen entweder ein gemäßigt-ozeanisches oder gemäßigt-kontinentales Klima auf. In dieser Studie zeigte sich für einige—sowohl nicht-einheimische als auch einhimische—Arten eine Fehlanpassung an die eigenen lokalen Bedingungen. In demethylierten Individuen der untersuchten Pflanzenarten wirkte sich die DNA-Methylierung widersprüchlich, aber artspezifisch auf das Überleben und die Biomasseproduktion aus. Die Ergebnisse dieser Studie unterstreichen, dass DNA-Methylierung einen vernachlässigbaren Beitrag zur lokalen Anpassung bei den untersuchten nicht-heimischen, aber auch einheimischen Arten leistete. Zusammenfassend konnte ich mit dieser Arbeit festellen, dass DNA-Methylierung bei nicht-einheimischen Pflanzenarten eine untergeordnete Rolle sowohl bei der adaptiven Merkmalsvariation entlang von Klimagradienten als auch der lokalen Anpassung an klimatisch unterschiedliche Regionen spielt, wenn diese Pflanzenarten eine hohe genetische Vielfalt aufweisen und sich hauptsächlich sexuell vermehren. Ich konnte zeigen, dass der Anpassungserfolg dieser nicht-einheimischen Pflanzenarten kaum durch DNA-Methylierung erklärbar ist, sondern vielmehr eine mögliche Folge mehrfacher Eintragungen, von Ausbreitungskorridoren und Meta-Populationsdynamiken sein könnte. Die Ergebnisse dieser Studien verdeutlichen ebenso, dass die Verwendung von Pflanzenarten, die sich nicht überwiegend klonal vermehren und keine genetischen Modellpflanzen sind, unerlässlich ist, um die Effektstärke epigenetischer Mechanismen im ökologisch-evolutionären Kontext zu charakterisieren. KW - common-garden experiment KW - reciprocal transplant experiment KW - epigenetics KW - cytosine methylation KW - zebularine KW - adaptive differentiation KW - local adaptation KW - microsatellites KW - Solidago canadensis KW - Solidago gigantea KW - Amaranthus retroflexus KW - Chenopodium album KW - Erigeron canadensis KW - Erigeron annuus KW - Lactuca serriola KW - Senecio vulgaris KW - Sonchus oleraceus KW - Tripleurospermum inodorum KW - Veronica persica KW - Plantago major KW - Datura stramonium KW - Solanum nigrum KW - latitudinal clines KW - population structure KW - invasive KW - ruderal KW - non-native KW - Central Europe KW - Germany KW - AFLP KW - MSAP KW - spatial autocorrelation KW - genome scan KW - Gemeinschaftsgarten-Experiment KW - reziprokes Transplantationsexperiment KW - Epigenetik KW - Cytosin-Methylierung KW - Zebularin KW - adaptive Differenzierung KW - lokale Anpassung KW - Mikrosatelliten KW - Breitengrad KW - Ökokline KW - Populationsstruktur KW - invasiv KW - ruderal KW - nicht-einheimisch KW - Mitteleuropa KW - Deutschland KW - AFLP KW - MSAP KW - räumliche Autokorrelation KW - Genom-Scan Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568844 ER - TY - THES A1 - Wetzel, Alexandra T1 - Epigenetische Regulation des Epstein-Barr Virus-induzierten Gens 3 (EBI3) und dessen Bedeutung bei Colitis ulcerosa N2 - Epigenetische Mechanismen spielen eine entscheidende Rolle bei der Pathogenese von Colitis ulcerosa (CU). Ihr Einfluss auf das beobachtete Ungleichgewicht zwischen pro- und anti-inflammatorischen Cytokinen ist hingegen weitgehend unerforscht. Einige der wichtigsten immunmodulatorischen Cytokine sind die Mitglieder der heterodimeren Interleukin- (IL-) 12-Familie, die durch das Kombinieren einer der drei α-Ketten (IL-12p35, IL-27p28, IL-23p19) mit den ß-Untereinheiten IL-12p40 oder EBI3 (Epstein-Barr Virus-induziertes Gen 3) charakterisiert sind. IL-35 (IL-12p35/EBI3) spielt eine bedeutende anti-inflammatorische Rolle bei verschiedenen Erkrankungen, wohingegen seine Level bei chronischen Entzündungen erniedrigt sind. Eine mögliche Ursache könnte eine transkriptionelle Stilllegung über epigenetische Modifikationen sein. Tatsächlich konnte durch die Stimulation mit dem DNA-Methyltransferase-Inhibitor (DNMTi) Decitabin (DAC; Dacogen®) eine Induktion von EBI3 in humanen Epithelzellen aus gesundem Colon (HCEC) erreicht werden, die als Modell für ein lokales Entzündungsgeschehen dienten. Diese Regulation über DNA-Methylierung konnte in weiteren humanen Zellen unterschiedlichen Ursprungs sowie durch Stimulation von HCEC-Zellen mit zwei weiteren DNMTi, dem Cytosin-Analogon Azacytidin (AZA; Vidaza®) und dem natürlich vorkommenden, epigenetisch wirksamen Polyphenol Epigallocatechingallat (EGCG), verifiziert werden. Die kombinierte Inkubation mit Tumor-Nekrose-Faktor α (TNFα) resultierte jeweils in einer über-additiven Induktion von EBI3. Weiterführende Untersuchungen zeigten, dass TNFα trotz Beeinflussung der epigenetischen DNMT- und Ten-eleven Translocation- (TET-) Enzyme keinen Einfluss auf die globalen Methylierungs- oder Hydroxymethylierungslevel hatte, jedoch eine genspezifische DNA-Hypomethylierung im EBI3-Promotor induzierte. Durch Nutzung verschiedener Inhibitoren konnte darüber hinaus nachgewiesen werden, dass der beobachtete synergistische Effekt der gemeinsamen DAC und TNFα-Stimulation hauptsächlich über NFκB (Nuclear factor “kappa-light-chain-enhancer” of activated B-cells) vermittelt wird. Ein Teil verläuft dabei über p38 MAPK (mitogen-activated protein kinases), während die JNK- (c-Jun N-terminale Kinasen-) und ERK- (extracellular-signal-regulated kinases) Signalwege keine Rolle spielen. In der vorliegenden Arbeit wurde zudem gezeigt, dass die DNA-Hypomethylierung während eines entzündlichen Zustandes auch in einer erhöhten EBI3-Proteinexpression resultiert. Die Höhe der immunologisch detektierten Banden wies auf eine Dimerbildung sowohl im Zelllysat als auch im Überstand hin. Humane Colonepithelzellen sind demnach in der Lage, Cytokine zu bilden und zu sezernieren, was die Bedeutung von Nicht-Immunzellen bei der lokalen Immunantwort unterstreicht. Mittels Genexpressionsanalysen wurden IL-12p35 und IL-23p19 als mögliche Bindungspartner identifiziert. Aufgrund kreuzreaktiver Antikörper ist ein direkter Nachweis der EBI3-Dimere derzeit nicht möglich. Die stattdessen genutzte Kombination verschiedener Methoden dient als geeigneter Ersatz für die problematischen Antikörper-basierten Analysen wie Immunpräzipitation oder ELISA. Durch molekularbiologische, immunologische und massenspektrometrische Methoden konnte IL-35 identifiziert werden, während IL-39 (IL-23p19/EBI3) nicht detektiert wurde. Dies ist in Einklang mit den Erkenntnissen mehrerer Forschungsgruppen, die eine Bildung des nativen humanen Dimers aus IL-23p19 und EBI3 bezweifeln. Des Weiteren wurde die biologische Aktivität des behandlungsinduzierten IL 35-Proteins durch einen Funktionsassay nachgewiesen. Neben einer DNMTi-bedingten transkriptionellen Aktivierung konnte eine Regulation von EBI3 über Histonacetylierungen gezeigt werden. Der EBI3-induzierende Effekt des Histondeacetylasen-Inhibitors (HDACi) Trichostatin A (TSA) wurde durch SAHA (suberoylanilide hydroxamic acid (Vorinostat; Zolinza®)) verifiziert. Ähnlich zu der Stimulation mit den hypomethylierenden Substanzen wurde ein synergistischer Effekt bei paralleler Inkubation mit TNFα beobachtet, der in einer gesteigerten Bildung des EBI3-Proteins resultierte. Um die Befunde in einem komplexeren in vivo-Modell zu untersuchen, wurde eine chronische Colitis in Ebi3-defizienten Mäusen und dem dazugehörigen Wildtypstamm C57BL/6 durch zyklische Applikation von Natriumdextransulfat (Dextran sodium sulfate (DSS)) induziert. Der Vergleich klinischer Parameter wie Mortalitätsrate und Körper- sowie Milzgewicht wies bei Abwesenheit von Ebi3 signifikant stärkere colitische Symptome auf. Dies bestätigte die zentrale Rolle von Ebi3 in der Colitisentwicklung und deutete auf eine bevorzugte Bildung des anti-inflammatorisch wirkenden IL-35 statt des pro-inflammatorischen IL-39 in den Wildtyptieren hin. Durch zusätzliche therapeutische Behandlung der C57BL/6-Mäuse nach der DSS-Gabe konnte die in der Literatur beschriebene positive Wirkung von SAHA auf die Colitismanifestation bestätigt werden. Im Gegensatz dazu war der HDACi in den Ebi3-defizienten Tieren nicht in der Lage, die colitischen Parameter zu verbessern beziehungsweise verschlimmerte den Krankheitsphänotyp. Expressionsanalysen von Up- und Downstream-Target-Genen lieferten weitere Hinweise darauf, dass bei Anwesenheit von Ebi3 IL-35 statt IL-39 gebildet wird, was in Einklang mit den in vitro-Untersuchungen steht. Die vorliegende Arbeit konnte durch den Vergleich der C57BL/6-Mäuse mit den Ebi3-defizienten Tieren neue Erkenntnisse über die Wirkungsweise von SAHA erbringen. Histonacetylierende Bedingungen verbessern colitische Symptome über einen Mechanismus, der die epigenetische Induktion von Ebi3 mit nachfolgender IL-35-Bildung involviert. Durch Kooperation der epigenetischen Mechanismen Hypomethylierung und Histonacetylierung wurde der stärkste Effekt auf die EBI3-Induktion bewirkt. Insgesamt konnte in der vorliegenden Arbeit durch in vitro- und in vivo-Analysen die epigenetische und NFκB-vermittelte Induktion von EBI3 über DNA-Demethylierung und Histonacetylierung mit nachfolgender IL-35-Bildung und –Sezernierung nachgewiesen werden. Da IL-35 in der Lage ist, colitische Symptome zu mildern, stellt die epigenetische Reaktivierbarkeit von EBI3 durch DNMTi und HDACi eine vielversprechende Alternative für die derzeit genutzten, oft nicht oder nur kurzfristig wirksamen Therapien bei der Behandlung einer CU dar. Einer übermäßigen Immunantwort während schubweiser entzündlicher Phasen könnte entgegengewirkt und Komplikationen wie die Bildung Colitis-assoziierter Karzinome verhindert werden. N2 - Aberrant epigenetic alterations are becoming increasingly relevant in the development of multiple diseases. Epigenetic mechanisms also play a crucial role in the pathogenesis of ulcerative colitis (CU). In contrast, their influence on the observed imbalance between pro- and anti-inflammatory cytokines is largely unexplored. Several of the most important immunomodulatory cytokines are the members of the heterodimeric interleukin- (IL-) 12 family, which are characterized by combining one of the three α-chains (IL-12p35, IL-27p28, IL-23p19) with the ß-subunits IL-12p40 or EBI3 (Epstein-Barr virus induced gene 3). IL-35 (IL-12p35/EBI3) plays a significant anti-inflammatory role in various diseases, while its levels are decreased in chronic inflammation. One possible reason could be transcriptional silencing via epigenetic modifications. Indeed, stimulation with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC; Dacogen®) resulted in reactivation of EBI3 in Human Colon Epithelial Cells (HCEC) generated from healthy tissue, which served as a model for a local inflammatory process. This regulation via DNA methylation could be verified in other human cells of different origin as well as by stimulating HCEC cells with two additional DNMTi, the cytosine analog azacytidine (AZA; Vidaza®) and the naturally occurring, epigenetically active polyphenol epigallocatechin gallate (EGCG). Combined incubation with tumor necrosis factor α (TNFα) resulted in synergistic induction of EBI3. Further studies showed that TNFα had no effect on global methylation or hydroxymethylation levels despite its influence on epigenetic DNMT and ten-eleven translocation (TET) enzymes, but induced gene-specific DNA hypomethylation in the EBI3 promoter. Moreover, by using several inhibitors, it has been demonstrated that the synergistic effect of DAC and TNFα stimulation is mediated mainly via NFκB (nuclear factor "kappa-light-chain-enhancer" of activated B-cells). Part of this occurs via p38 MAPK (mitogen-activated protein kinases), while the JNK (c-Jun N-terminal kinases) and ERK (extracellular-signal-regulated kinases) signaling pathways are not involved. In the present work, it was also shown that DNA hypomethylation during an inflammatory condition also results in increased EBI3 protein expression. The level of immunologically detected bands indicated dimer formation in both cell lysate and supernatant. Human epithelial cells are therefore capable of producing and secreting cytokines, underlining the importance of non-immune cells in the local immune response. Gene expression analyses identified IL-12p35 and IL-23p19 as possible binding partners. Due to cross-reactive antibodies, direct detection of EBI3 dimers is currently not possible. The combination of different methods used instead serves as a suitable alternative to the problematic antibody-based analyses such as immunoprecipitation or ELISA. Molecular biology, immunology, and mass spectrometry methods identified IL-35, whereas IL-39 (IL-23p19/EBI3) was not detected. This is in agreement with the findings of several research groups that doubt formation of the native human dimer. Furthermore, the biological activity of treatment-induced IL-35 protein was detected by a functional assay. In addition to DNMTi-induced reactivation, regulation of EBI3 via histone acetylation was demonstrated. The EBI3-inducing effect of the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) was verified by SAHA (suberoylanilide hydroxamic acid (Vorinostat; Zolinza®)). Similar to stimulation with the hypomethylating agents, a synergistic effect was observed with parallel incubation with TNFα, resulting in increased EBI3 protein formation. To investigate the effects in a more complex in vivo model, chronic colitis was induced in Ebi3-deficient mice and the corresponding wild-type strain C57BL/6 by cyclic application of dextran sodium sulfate (DSS). Comparison of clinical parameters such as mortality rate and body as well as spleen weight showed significantly more severe colitic symptoms in the absence of Ebi3. This confirmed the central role of Ebi3 in colitis development and indicated preferential formation of the anti-inflammatory IL-35 rather than the pro-inflammatory IL-39 in wild-type animals. Additional therapeutic treatment of C57BL/6 mice after DSS administration confirmed the beneficial effect of SAHA on colitis manifestation reported in the literature. In contrast, HDACi in the Ebi3-deficient animals was not able to improve colitic parameters and even appeared to exacerbate the disease phenotype. Expression analyses of up- and downstream target genes provided further evidence that IL-35 rather than IL-39 is produced in the presence of Ebi3, consistent with the in vitro studies. Thus, comparison of the C57BL/6 mice with the Ebi3-deficient animals could provide insights into the mode of action of SAHA. Histone acetylating conditions ameliorate colitic symptoms via a mechanism involving epigenetic induction of Ebi3 followed by IL-35 formation. Based on the cooperation of epigenetic mechanisms and the drastic EBI3 induction shown by parallel hypomethylating and histone acetylating conditions, combined treatment with low-dose DNMTi and HDACi represents a therapeutic option for CU. In summary, the present work demonstrated epigenetic and NFκB-mediated reactivation of EBI3 via DNA demethylation and histone acetylation with subsequent IL-35 formation and secretion by in vitro and in vivo analyses. Since IL-35 is able to alleviate colitic symptoms, the epigenetic inducibility of EBI3 by DNMTi and HDACi represents a promising alternative for the currently used therapies in the treatment of CU, which are often not successful or only short-term effective. An excessive immune response during relapsing inflammatory phases could be counteracted and complications such as the formation of colitis-associated carcinomas prevented. KW - Epigenetik KW - Epstein-Barr Virus-induziertes Gen 3 KW - Colitis ulcerosa Y1 - 2022 ER - TY - THES A1 - Vyse, Kora T1 - Elucidating molecular determinants of the loss of freezing tolerance during deacclimation after cold priming and low temperature memory after triggering N2 - Während ihrer Entwicklung müssen sich Pflanzen an Temperaturschwankungen anpassen. Niedrige Temperaturen über dem Gefrierpunkt induzieren in Pflanzen eine Kälteakklimatisierung und höhere Frosttoleranz, die sich bei wärmeren Temperaturen durch Deakklimatisierung wieder zurückbildet. Der Wechsel zwischen diesen beiden Prozessen ist für Pflanzen unerlässlich, um als Reaktion auf unterschiedliche Temperaturbedingungen eine optimale Fitness zu erreichen. Die Kälteakklimatisierung ist umfassend untersucht worden,über die Regulierung der Deakklimatisierung ist jedoch wenig bekannt. In dieser Arbeit wird der Prozess der Deakklimatisierung auf physiologischer und molekularer Ebene in Arabidopsis thaliana untersucht. Messungen des Elektrolytverlustes während der Kälteakklimatisierung und bis zu vier Tagen nach Deakklimatisierung ermöglichten die Identifizierung von vier Knockout-Mutanten (hra1, lbd41, mbf1c und jub1), die im Vergleich zum Wildtyp eine langsamere Deakklimatisierungsrate aufwiesen. Eine transkriptomische Studie mit Hilfe von RNA-Sequenzierung von A. thaliana Col-0, jub1 und mbf1c zeigte die Bedeutung der Hemmung von stressreaktiven und Jasmonat-ZIM-Domänen-Genen sowie die Regulierung von Zellwandmodifikationen während der Deakklimatisierung. Darüber hinaus zeigten Messungen der Alkoholdehydrogenase Aktivität und der Genexpressionsänderungen von Hypoxiemarkern während der ersten vier Tagen der Deakklimatisierung, dass eine Hypoxie-Reaktion während der Deakklimatisierung aktiviert wird. Es wurde gezeigt, dass die epigenetische Regulierung während der Kälteakklimatisierung und der 24-stündigen Deakklimatisierung in A. thaliana eine große Rolle spielt. Darüber hinaus zeigten beide Deakklimatisierungsstudien, dass die frühere Hypothese, dass Hitzestress eine Rolle bei der frühen Deakklimatisierung spielen könnte, unwahrscheinlich ist. Eine Reihe von DNA- und Histondemethylasen sowie Histonvarianten wurden während der Deakklimatisierung hochreguliert, was auf eine Rolle im pflanzlichen Gedächtnis schließen lässt. In jüngster Zeit haben mehrere Studien gezeigt, dass Pflanzen in der Lage sind, die Erinnerung an einen vorangegangenen Kältestress auch nach einer Woche Deakklimatisierung zu bewahren. In dieser Arbeit ergaben Transkriptom- und Metabolomanalysen von Arabidopsis während 24 Stunden Priming (Kälteakklimatisierung) und Triggering (wiederkehrender Kältestress nach Deakklimatisierung) eine unikale signifikante und vorübergehende Induktion der Transkriptionsfaktoren DREB1D, DREB1E und DREB1F während des Triggerings, die zur Feinabstimmung der zweiten Kältestressreaktion beiträgt. Darüber hinaus wurden Gene, die für Late Embryogenesis Abundant (LEA) und Frostschutzproteine kodieren, sowie Proteine, die reaktive Sauerstoffspezies entgiften, während des späten Triggerings (24 Stunden) stärker induziert als nach dem ersten Kälteimpuls, während Xyloglucan- Endotransglucosylase/Hydrolase Gene, deren Produkte für eine Restrukturierung der Zellwand verantwortlich sind, früh auf das Triggering reagierten. Die starke Induktion dieser Gene, sowohl bei der Deakklimatisierung als auch beim Triggering, lässt vermuten, dass sie eine wesentliche Rolle bei der Stabilisierung der Zellen während des Wachstums und bei der Reaktion auf wiederkehrende Stressbedingungen spielen. Zusammenfassend gibt diese Arbeit neue Einblicke in die Regulierung der Deakklimatisierung und des Kältestress-Gedächtnisses in A. thaliana und eröffnet neue Möglichkeiten für künftige, gezielte Studien von essentiellen Genen in diesem Prozess. N2 - Throughout their lifetime plants need to adapt to temperature changes. Plants adapt to nonfreezing cold temperatures in a process called cold priming (cold acclimation) and lose the acquired freezing tolerance during warmer temperatures through deacclimation. The alternation of both processes is essential for plants to achieve optimal fitness in response to different temperature conditions. Cold acclimation has been extensively studied, however, little is known about the regulation of deacclimation. This thesis elucidates the process of deacclimation on a physiological and molecular level in Arabidopsis thaliana. Electrolyte leakage measurements during cold acclimation and up to four days of deacclimation enabled the identification of four knockout mutants (hra1, lbd41, mbf1c and jub1) with a slower rate of deacclimation compared to the wild type. A transcriptomic study using RNA-Sequencing in A. thaliana Col-0, jub1 and mbf1c identified the importance of the inhibition of stress responsive and Jasmonate-ZIM-domain genes as well as the regulation of cell wall modifications during deacclimation. Moreover, measurements of alcohol dehydrogenase activity and gene expression changes of hypoxia markers during the first four days of deacclimation evidently showed that a hypoxia response is activated during deacclimation. Epigenetic regulation was observed to be extensively involved during cold acclimation and 24 h of deacclimation in A. thaliana. Further, both deacclimation studies showed that the previous hypothesis that heat stress might play a role in early deacclimation, is not likely. A number of DNA- and histone demethylases as well as histone variants were upregulated during deacclimation suggesting a role in plant memory. Recently, multiple studies have shown that plants are able to retain memory of a previous cold stress even after a week of deacclimation. In this work, transcriptomic and metabolomic analyses of Arabidopsis during 24 h of priming (cold acclimation) and triggering (recurring cold stress after deacclimation) revealed a uniquely significant and transient induction of DREB1D, DREB1E and DREB1F transcription factors during triggering contributing to fine-tuning of the second cold stress response. Furthermore, genes encoding Late Embryogenesis Abundant (LEA) and antifreeze proteins and proteins detoxifying reactive oxygen species were higher induced during late triggering (24 h) compared to primed samples, while cell wall remodelers of the class xyloglucan endotransglucosylase/hydrolase were early responders of triggering. The high induction of cell wall remodelers during deacclimation as well as triggering proposes that these proteins play an essential role in the stabilization of the cells during growth as well as the response to recurring stresses. Collectively this work gives new insights on the regulation of deacclimation and cold stress memory in A. thaliana and opens the door to future targeted studies of essential genes in this process. KW - cold stress KW - deacclimation KW - Arabidopsis thaliana KW - epigenetics KW - co-expression network analysis KW - WGCNA KW - RNA-sequencing KW - differential gene expression KW - hypoxia KW - transcription factors KW - Kältestress KW - Deakklimatisierung KW - Epigenetik KW - Koexpression Netzwerk Analysen KW - RNA-Sequenzierung KW - Differenzielle Genexpression KW - Hypoxie KW - Transkriptionsfaktoren Y1 - 2022 ER -