TY - THES A1 - Angelopoulos, Michael T1 - Mechanisms of sub-aquatic permafrost evolution in Arctic coastal environments BT - field observations and modelling of submerged ice-rich permafrost deposits and thermokarst lagoons in northeastern Siberia N2 - Subsea permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. It is a reservoir and confining layer for gas hydrates and has the potential to release greenhouse gases and affect global climate change. Furthermore, subsea permafrost thaw destabilizes coastal infrastructure. While numerous studies focus on its distribution and rate of thaw over glacial timescales, these studies have not been brought together and examined in their entirety to assess rates of thaw beneath the Arctic Ocean. In addition, there is still a large gap in our understanding of sub-aquatic permafrost processes on finer spatial and temporal scales. The degradation rate of subsea permafrost is influenced by the initial conditions upon submergence. Terrestrial permafrost that has already undergone warming, partial thawing or loss of ground ice may react differently to inundation by seawater compared to previously undisturbed ice-rich permafrost. Heat conduction models are sufficient to model the thaw of thick subsea permafrost from the bottom, but few studies have included salt diffusion for top-down chemical degradation in shallow waters characterized by mean annual cryotic conditions on the seabed. Simulating salt transport is critical for assessing degradation rates for recently inundated permafrost, which may accelerate in response to warming shelf waters, a lengthening open water season, and faster coastal erosion rates. In the nearshore zone, degradation rates are also controlled by seasonal processes like bedfast ice, brine injection, seasonal freezing under floating ice conditions and warm freshwater discharge from large rivers. The interplay of all these variables is complex and needs further research. To fill this knowledge gap, this thesis investigates sub-aquatic permafrost along the southern coast of the Bykovsky Peninsula in eastern Siberia. Sediment cores and ground temperature profiles were collected at a freshwater thermokarst lake and two thermokarst lagoons in 2017. At this site, the coastline is retreating, and seawater is inundating various types of permafrost: sections of ice-rich Pleistocene permafrost (Yedoma) cliffs at the coastline alternate with lagoons and lower elevation previously thawed and refrozen permafrost basins (Alases). Electrical resistivity surveys with floating electrodes were carried out to map ice-bearing permafrost and taliks (unfrozen zones in the permafrost, usually formed beneath lakes) along the diverse coastline and in the lagoons. Combined with the borehole data, the electrical resistivity results permit estimation of contemporary ice-bearing permafrost characteristics, distribution, and occasionally, thickness. To conceptualize possible geomorphological and marine evolutionary pathways to the formation of the observed layering, numerical models were applied. The developed model incorporates salt diffusion and seasonal dynamics at the seabed, including bedfast ice. Even along coastlines with mean annual non-cryotic boundary conditions like the Bykovsky Peninsula, the modelling results show that salt diffusion minimizes seasonal freezing of the seabed, leading to faster degradation rates compared to models without salt diffusion. Seasonal processes are also important for thermokarst lake to lagoon transitions because lagoons can generate cold hypersaline conditions underneath the ice cover. My research suggests that ice-bearing permafrost can form in a coastal lagoon environment, even under floating ice. Alas basins, however, may degrade more than twice as fast as Yedoma permafrost in the first several decades of inundation. In addition to a lower ice content compared to Yedoma permafrost, Alas basins may be pre-conditioned with salt from adjacent lagoons. Considering the widespread distribution of thermokarst in the Arctic, its integration into geophysical models and offshore surveys is important to quantify and understand subsea permafrost degradation and aggradation. Through numerical modelling, fieldwork, and a circum-Arctic review of subsea permafrost literature, this thesis provides new insights into sub-aquatic permafrost evolution in saline coastal environments. KW - permafrost KW - subsea KW - submarine KW - thermokarst KW - lagoons KW - salt diffusion KW - electrical resistivity Y1 - 2020 ER - TY - THES A1 - Holm, Stine T1 - Methanogenic communities and metaplasmidome-encoded functions in permafrost environments exposed to thaw N2 - This thesis investigates how the permafrost microbiota responds to global warming. In detail, the constraints behind methane production in thawing permafrost were linked to methanogenic activity, abundance and composition. Furthermore, this thesis offers new insights into microbial adaptions to the changing environmental conditions during global warming. This was assesed by investigating the potential ecological relevant functions encoded by plasmid DNA within the permafrost microbiota. Permafrost of both interglacial and glacial origin spanning the Holocene to the late Pleistocene, including Eemian, were studied during long-term thaw incubations. Furthermore, several permafrost cores of different stratigraphy, soil type and vegetation cover were used to target the main constraints behind methane production during short-term thaw simulations. Short- and long-term incubations simulating thaw with and without the addition of substrate were combined with activity measurements, amplicon and metagenomic sequencing of permanently frozen and seasonally thawed active layer. Combined, it allowed to address the following questions. i) What constraints methane production when permafrost thaws and how is this linked to methanogenic activity, abundance and composition? ii) How does the methanogenic community composition change during long-term thawing conditions? iii) Which potential ecological relevant functions are encoded by plasmid DNA in active layer soils? The major outcomes of this thesis are as follows. i) Methane production from permafrost after long-term thaw simulation was found to be constrained mainly by the abundance of methanogens and the archaeal community composition. Deposits formed during periods of warmer temperatures and increased precipitation, (here represented by deposits from the Late Pleistocene of both interstadial and interglacial periods) were found to respond strongest to thawing conditions and to contain an archaeal community dominated by methanogenic archaea (40% and 100% of all detected archaea). Methanogenic population size and carbon density were identified as main predictors for potential methane production in thawing permafrost in short-term incubations when substrate was sufficiently available. ii) Besides determining the methanogenic activity after long-term thaw, the paleoenvironmental conditions were also found to influence the response of the methanogenic community composition. Substantial shifts within methanogenic community structure and a drop in diversity were observed in deposits formed during warmer periods, but not in deposits from stadials, when colder and drier conditions occurred. Overall, a shift towards a dominance of hydrogenotrophic methanogens was observed in all samples, except for the oldest interglacial deposits from the Eemian, which displayed a potential dominance of acetoclastic methanogens. The Eemian, which is discussed to serve as an analogue to current climate conditions, contained highly active methanogenic communities. However, all potential limitation of methane production after permafrost thaw, it means methanogenic community structure, methanogenic population size, and substrate pool might be overcome after permafrost had thawed on the long-term. iii) Enrichments with soil from the seasonally thawed active layer revealed that its plasmid DNA (‘metaplasmidome’) carries stress-response genes. In particular it encoded antibiotic resistance genes, heavy metal resistance genes, cold shock proteins and genes encoding UV-protection. Those are functions that are directly involved in the adaptation of microbial communities to stresses in polar environments. It was further found that metaplasmidomes from the Siberian active layer originate mainly from Gammaproteobacteria. By applying enrichment cultures followed by plasmid DNA extraction it was possible to obtain a higher average contigs length and significantly higher recovery of plasmid sequences than from extracting plasmid sequences from metagenomes. The approach of analyzing ‘metaplasmidomes’ established in this thesis is therefore suitable for studying the ecological role of plasmids in polar environments in general. This thesis emphasizes that including microbial community dynamics have the potential to improve permafrost-carbon projections. Microbially mediated methane release from permafrost environments may significantly impact future climate change. This thesis identified drivers of methanogenic composition, abundance and activity in thawing permafrost landscapes. Finally, this thesis underlines the importance to study how the current warming Arctic affects microbial communities in order to gain more insight into microbial response and adaptation strategies. N2 - Diese Dissertation untersucht die Reaktion der Permafrost-Mikrobiota auf die globale Erwärmung. Im Detail wurden mögliche Faktoren, die die Methanproduktion in tauendem Permafrost einschränken, im Zusammenhang methanogener Aktivität, Abundanz und Gemeinschaftszusammensetzung untersucht. Darüber hinaus bietet diese Dissertation neue Einblicke in mikrobielle Anpassungen an die sich ändernden Umweltbedingungen während der globalen Erwärmung. Dies wurde durch Untersuchung der potenziell ökologisch relevanten Funktionen bewertet, die von Plasmid-DNA innerhalb der Permafrost-Mikrobiota codiert werden. Permafrost, der seinen Ursprung in den Interglazialen und Glazialen aus dem Holozän bis zum späten Pleistozän, einschließlich des Eem, hat, wurde in Langzeit-Tau-Inkubationen untersucht. Darüber hinaus wurden mehrere Permafrostkerne mit unterschiedlicher Stratigraphie, Vegetationsbedeckung und unterschiedlichem Bodentyp verwendet, um die Faktoren, die die Methanproduktion während kurzfristiger Auftausimulationen bestimmen, zu ermitteln. Kurz- und Langzeitinkubationen, die das Auftauen mit und ohne Zugabe von Substrat in Kombination mit Aktivitätsmessungen, Amplikon- und Metagenom-Sequenzierung von permanent gefrorenem und saisonal aufgetautem Boden simulieren, ermöglichten die Beantwortung folgender Fragen: i) Welche Faktoren hemmen die Methanproduktion beim Auftauen des Permafrosts und wie hängt dies mit der Aktivität, Abundanz und Zusammensetzung methanogener Organismen zusammen? ii) Wie verändert sich die Gemeinschaftszusammensetzung methanogener Organismen unter langfristigen Auftaubedingungen? iii) Welche potenziell ökologisch relevanten Funktionen werden von Plasmid-DNA in saisonal getauten Böden kodiert? Die wichtigsten Ergebnisse dieser Arbeit können wie folgt zusammengefasst werden. i) Die Methanproduktion in langfristig getautem Permafrost wird hauptsächlich durch die Anzahl der methanogenen Archaeen und ihrem Anteil innerhalb der Archaeen bestimmt. Ablagerungen, die in wärmeren Perioden mit erhöhtem Niederschlag gebildet wurden, reagierten am stärksten auf das Tauen und enthielten eine von Methanogenen dominierte Archaeen-Gemeinschaft. In Kurzzeitinkubationen mit ausreichender Verfügbarkeit von Substrat wurden die Populationsgröße der methanogenen Organismen und die Kohlenstoffdichte als Hauptprädiktoren für die potenzielle Methanproduktion beim Auftauen von Permafrost identifiziert. ii) Auch die paläoökologischen Bedingungen beeinflussen die Reaktion der methanogenen Gemeinschaft und Aktivität, wenn Permafrost taut. Es wurden erhebliche Verschiebungen innerhalb der Gemeinschaftsstruktur und ein Rückgang der Diversität in Ablagerungen beobachtet, die in wärmeren Perioden gebildet wurden, jedoch nicht bei Ablagerungen aus kälteren und trockeneren Perioden. Insgesamt wurde in allen Proben eine Verschiebung hin zu einer Dominanz von hydrogenotrophen Methanogenen beobachtet, mit Ausnahme der ältesten interglazialen Ablagerungen aus dem Eem, die eine potenzielle Dominanz von acetoklastischen Methanogenen aufwiesen. Das Eem, das als Analogon zu den aktuellen Klimabedingungen diskutiert wird, enthielt hochaktive methanogene Gemeinschaften. iii) Anreicherungen aus Boden der saisonalen Auftauschicht zeigten, dass die enthaltene Plasmid-DNA („Metaplasmidom“) Stress-Reaktions-Gene trägt. Insbesondere codierte die Plasmid-DNA Antibiotikaresistenzgene, Schwermetallresistenzgene, Kälteschock-proteine und Gene, für den UV-Schutz, also Funktionen, die direkt an der Anpassung mikrobieller Gemeinschaften an Stress in polaren Umgebungen beteiligt sind. Weiterhin stammten die Metaplasmidome der saisonalen Auftauschicht Sibiriens hauptsächlich von Gammaproteobakterien. Durch die Anreicherung von Kulturen, gefolgt von einer Extraktion der Plasmid-DNA, war es möglich, eine höhere durchschnittliche Contig-Länge und eine signifikant höhere Wiederherstellung von Plasmidsequenzen zu erhalten als durch Extrahieren von Plasmidsequenzen aus Metagenomen. Der in dieser Arbeit etablierte Ansatz zur Analyse von „Metaplasmidomen“ ist ein geeigneter Ansatz zur Untersuchung der ökologischen Rolle von Plasmiden in polaren Regionen insgesamt. Diese Dissertation hebt hervor, wie wichtig es ist, die Abundanz, Zusammensetzung und Funktionen der mikrobiellen Gemeinschaft in Permafrost-Kohlenstoff-Projektionen einzubeziehen, und zwar nicht nur, da die mikrobiell vermittelte Methanfreisetzung aus Permafrostablagerungen das Potenzial hat, den zukünftigen Klimawandel erheblich zu beeinflussen. Vielmehr wurden in dieser Arbeit Abhängigkeiten methanogener Gemeinschaftsstrukturen, Abundanz und Aktivität identifiziert. Abschließend verdeutlicht diese Arbeit, wie wichtig es ist zu untersuchen, wie sich die derzeitige Erwärmung der Arktis auf mikrobielle Gemeinschaften auswirkt, um Einblicke in mikrobielle Reaktions- und Anpassungsstrategien zu erhalten. KW - methanogenic archaea KW - methane KW - glacial and interglacial permafrost KW - Permafrost carbon feedback KW - carbon density KW - Siberia KW - Herschel Island Qikiqtaruk KW - active layer KW - plasmidome KW - stress-tolerance genes Y1 - 2020 ER - TY - THES A1 - Menges, Johanna T1 - Organic Carbon Storage, Transfer and Transformation in the Himalaya BT - insights from the Kali Gandaki Valley in Central Nepal N2 - The transfer of particulate organic carbon from continents to the ocean is an important component of the global carbon cycle. Transfer to and burial of photosynthetically fixed biospheric organic carbon in marine sediments can effectively sequester atmospheric carbon dioxide over geological timescales. The exhumation and erosion of fossil organic carbon contained in sedimentary rocks, i.e. petrogenic carbon, can result in remineralization, releasing carbon to the atmosphere. In contrast, eroded petrogenic organic carbon that gets transferred back to the ocean and reburied does not affect atmospheric carbon content. Mountain ranges play a key role in this transfer since they can source vast amounts of sediment including particulate organic carbon. Globally, the export of both, biospheric and petrogenic organic carbon has been linked to sediment export. Additionally, short transfer times from mountains to the ocean and high sediment concentrations have been shown to increase the likelihood of organic carbon burial. While the importance of mountain ranges in the organic carbon cycle is now widely recognized, the processes acting within mountain ranges to influence the storage, cycling and mobilization of organic carbon, as well as carbon fluxes from mountain ranges remain poorly constrained. In this thesis, I employ different methods to assess the nature and fate of particulate organic carbon in mountain belts, ranging from the molecular to regional landscape scale. These studies are located along the Trans-Himalayan Kali Gandaki River in Central Nepal. This river traverses all major geological and climatic zones of the Himalaya, from the dry northern Tibetan plateau to the high-relief, monsoon dominated steep High Himalaya and the lower relief and abundant vegetation of the Lesser Himalayan region. First, I document how biospheric organic matter has accumulated during the Holocene in the headwaters of the Kali Gandaki River valley, by combining compound specific isotope measurements with different dating methods and grain size data, and investigate the stability of this organic carbon reservoir on millennial timescales. I show, that around 1.6 ka an eco-geomorphic tipping point occurred leading to a destabilization of the landscape resulting in today’s high erosion rates and the excavation of the aged organic carbon reservoir. This study highlights the climatic and geomorphic controls on biospheric organic carbon storage and release from mountain ranges. Second, I systematically investigate the spatial variation of particulate organic carbon fluxes across the Himalaya along the Kali Gandaki River, using bulk stable and radioactive isotopes combined with a new Bayesian modeling approach. The detailed dataset allows the distinction of aged and modern biospheric organic carbon as well as petrogenic organic carbon across the Himalayan mountain range and the investigation of the role of climatic and geomorphic factors in their riverine export. The data suggest a decoupling of the particulate organic carbon from the sediment yield along the Kali Gandaki River, partially driven by climatic and geomorphic processes. In contrast to the suspended sediment, a large part of the particulate organic carbon exported by the river originates from the Tibetan part of the catchment and is dominated by petrogenic organic carbon derived from Jurassic shales with only minor contributions of modern and aged biospheric organic carbon. These findings emphasize the importance of organic carbon source distribution and erosion mechanisms in determining the organic carbon export from mountain ranges. In a third step, I explore the potential of ultra-high resolution mass spectrometry for particulate organic carbon transport studies. I have generated a novel and unprecedented high-resolution molecular dataset, which contains up to 103 molecular formulas of the lipid fraction of particulate organic matter for modern and aged biospheric carbon, petrogenic organic carbon and river sediments. First, I test if this dataset can be used to better resolve different organic carbon sources and to identify new geochemical tracers. Using multivariate statistics, I identify up to 10² characteristic molecular formulas for the major organic carbon sources in the upper part of the Kali Gandaki catchment, and trace their transfer from the surrounding landscape into the river sediment. Second, I test the potential of the molecular dataset to trace molecular transformations along source-to-sink pathways. I identify changes in molecular metrics derived from the dataset, which are characteristic of transformation processes during incorporation of litter into soil, the aging of soil material, and the mobilization of the organic carbon into the river. These two studies demonstrate that high-resolution molecular datasets open a promising analytical window on particulate organic carbon and can provide novel insights into the composition, sourcing and transformation of riverine particulate organic carbon. Collectively, these studies advance our understanding of the processes contributing to the storage and mobilization of organic carbon in the Central Himalaya, the mountain belt that dominates global erosional fluxes. They do so by identifying the major sources of particulate organic carbon to the Trans-Himalayan Kali Gandaki River, by elucidating their sensitivity to climate and geomorphic processes, and by identifying some of the transformations of this material on the molecular scale. As a result, the thesis demonstrates that the amount and composition of organic carbon routed from mountain belts is a function of the dynamic interactions of geologic, biologic, geomorphic and climatic processes within the mountain belt. This understanding will ultimately help in answering whether the build-up and erosion of mountain ranges over geological time represents a net carbon source or sink to the atmosphere. Beyond this, the thesis contributes to our technical ability to characterize organic matter and attribute it to sources by scoping the potential of high-end molecular analysis. KW - organic carbon cycle KW - biomarker KW - isotopes KW - Himalaya KW - rivers Y1 - 2020 ER - TY - THES A1 - Schimpf, Stefan T1 - Herkunft und Ablagerungsmilieu quartärer Sedimente im Einzugsgebiet des Heihe, NW China N2 - Der zentralasiatische Naturraum, wie er sich uns heute präsentiert, ist das Ergebnis eines Zusammenwirkens vieler verschiedener Faktoren über Jahrmillionen hinweg. Im aktuellen Kontext des Klimawandels zeigt sich jedoch, wie stark sich Stoffflüsse auch kurzfristig ändern und dabei das Gesicht der Landschaft verwandeln können. Die Gobi-Wüste in der Inneren Mongolei (China), als Teil der gleichnamigen Trockenregionen Nordwestchinas, ist aufgrund der Ausgestaltung ihrer landschaftsprägenden Elemente sowie ihrer Landschaftsdynamik, im Zusammenhang mit der Lage zum Tibet-Plateau, in den Fokus der klimageschichtlichen Grundlagenforschung gerückt. Als großes Langzeitarchiv unterschiedlichster fluvialer, lakustriner und äolischer Sedimente stellt sie eine bedeutende Lokalität zur Rekonstruktion von lokalen und regionalen Stoffflüssen dar.. Andererseits ist die Gobi-Wüste zugleich auch eine bedeutende Quelle für den überregionalen Staubtransport, da sie aufgrund der klimatischen Bedingungen insbesondere der Erosion durch Ausblasung preisgegeben wird. Vor diesem Hintergrund erfolgten zwischen 2011 und 2014, im Rahmen des BMBF-Verbundprogramms WTZ Zentralasien – Monsundynamik & Geoökosysteme (Förderkennzeichen 03G0814), mehrere deutsch-chinesische Expeditionen in das Ejina-Becken (Innere Mongolei) und das Qilian Shan-Vorland. Im Zuge dieser Expeditionen wurden für eine Bestimmung potenzieller Sedimentquellen erstmals zahlreiche Oberflächenproben aus dem gesamten Einzugsgebiet des Heihe (schwarzer Fluss) gesammelt. Zudem wurden mit zwei Bohrungen im inneren des Ejina-Beckens, ergänzende Sedimentbohrkerne zum bestehenden Bohrkern D100 (siehe Wünnemann (2005)) abgeteuft, um weit reichende, ergänzende Informationen zur Landschaftsgeschichte und zum überregionalen Sedimenttransfer zu erhalten. Gegenstand und Ziel der vorliegenden Doktorarbeit ist die sedimentologisch-mineralogische Charakterisierung des Untersuchungsgebietes in Bezug auf potenzielle Sedimentquellen und Stoffflüsse des Ejina-Beckens sowie die Rekonstruktion der Ablagerungsgeschichte eines dort erbohrten, 19m langen Sedimentbohrkerns (GN100). Schwerpunkt ist hierbei die Klärung der Sedimentherkunft innerhalb des Bohrkerns sowie die Ausweisung von Herkunftssignalen und möglichen Sedimentquellen bzw. Sedimenttransportpfaden. Die methodische Herangehensweise basiert auf einem Multi-Proxy-Ansatz zur Charakterisierung der klastischen Sedimentfazies anhand von Geländebeobachtungen, lithologisch-granulometrischen und mineralogisch-geochemischen Analysen sowie statistischen Verfahren. Für die mineralogischen Untersuchungen der Sedimente wurde eine neue, rasterelektronenmikroskopische Methode zur automatisierten Partikelanalyse genutzt und den traditionellen Methoden gegenübergestellt. Die synoptische Betrachtung der granulometrischen, geochemischen und mineralogischen Befunde der Oberflächensedimente ergibt für das Untersuchungsgebiet ein logisches Kaskadenmodell mit immer wiederkehrenden Prozessbereichen und ähnlichen Prozesssignalen. Die umfangreichen granulometrischen Analysen deuten dabei auf abnehmende Korngrößen mit zunehmender Entfernung vom Qilian Shan hin und ermöglichen die Identifizierung von vier texturellen Signalen: den fluvialen Sanden, den Dünensanden, den Stillwassersedimenten und Stäuben. Diese Ergebnisse können als Interpretationsgrundlage für die Korngrößenanalysen des Bohrkerns genutzt werden. Somit ist es möglich, die Ablagerungsgeschichte der Bohrkernsedimente zu rekonstruieren und in Verbindung mit eigenen und literaturbasierten Datierungen in einen Gesamtkontext einzuhängen. Für das Untersuchungsgebiet werden somit vier Ablagerungsphasen ausgewiesen, die bis in die Zeit des letzten glazialen Maximums (LGM) zurückreichen. Während dieser Ablagerungsphasen kam es im Zuge unterschiedlicher Aktivitäts- und Stabilitätsphasen zu einer kontinuierlichen Progradation und Überprägung des Schwemmfächers. Eine besonders aktive Phase kann zwischen 8 ka und 4 ka BP festgestellt werden, während der es aufgrund zunehmender fluvialer Aktivitäten zu einer deutlich verstärkten Schwemmfächerdynamik gekommen zu sein scheint. In den Abschnitten davor und danach waren es vor allem äolische Prozesse, die zu einer Überprägung des Schwemmfächers geführt haben. Hinsichtlich der mineralogischen Herkunftssignale gibt es eine große Variabilität. Dies spiegelt die enorme Heterogenität der Geologie des Untersuchungsgebietes wider, wodurch die räumlichen Signale nicht sehr stark ausgeprägt sind. Dennoch, können für das Einzugsgebiet drei größere Bereiche deklariert werden, die als Herkunftsgebiet in Frage kommen. Das östliche Qilian Shan Vorland zeichnet sich dabei durch deutlich höhere Chloritgehalte als primäre Quelle für die Sedimente im Ejina-Becken aus. Sie unterscheiden sich insbesondere durch stark divergierende Chloritgehalte in der Tonmineral- und Gesamtmineralfraktion, was das östliche Qilian Shan Vorland als primäre Quelle für die Sedimente im Ejina-Becken auszeichnet. Dies steht in Zusammenhang mit den Grünschiefern, Ophioliten und Serpentiniten in diesem Bereich. Geochemisch deutet vor allem das Cr/Rb-Verhältnis eine große Variabilität innerhalb des Einzugsgebietes an. Auch hier ist es das östliche Vorland, welches aufgrund seines hohen Anteils an mafischen Gesteinen reich an Chromiten und Spinellen ist und sich somit vom restlichen Untersuchungsgebiet abhebt. Die zeitliche aber auch die generelle Variabilität der Sedimentherkunft lässt sich in den Bohrkernsedimenten nicht so deutlich nachzeichnen. Die mineralogisch-sedimentologischen Eigenschaften der erbohrten klastischen Sedimente zeugen zwar von zwischenzeitlichen Änderungen bei der Sedimentherkunft, diese sind jedoch nicht so deutlich ausgeprägt, wie es die Quellsignale in den Oberflächensedimenten vermuten lassen. Ein Grund dafür scheint die starke Vermischung unterschiedlichster Sedimente während des Transportes zu sein. Die Kombination der Korngrößenergebnisse mit den Befunden der Gesamt- und Schwermineralogie deuten darauf hin, dass es zwischenzeitlich eine Phase mit überwiegend äolischen Prozessen gegeben hat, die mit einem Sedimenteintrag aus dem westlichen Bei Shan in Verbindung stehen. Neben der Zunahme ultrastabiler Schwerminerale wie Zirkon und Granat und der Abnahme opaker Schwerminerale, weisen vor allem die heutigen Verhältnisse darauf hin. Der Vergleich der traditionellen Schwermineralanalyse mit der Computer-Controlled-Scanning-Electron-Microscopy (kurz: CCSEM), die eine automatisierte Partikelauswertung der Proben ermöglicht, zeigt den deutlichen Vorteil der modernen Analysemethode. Neben einem zeitlichen Vorteil, den man durch die automatisierte Abarbeitung der vorbereiteten Proben erlangen kann, steht vor allem die deutlich größere statistische Signifikanz des Ergebnisses im Vordergrund. Zudem können mit dieser Methode auch chemische Varietäten einiger Schwerminerale bestimmt werden, die eine noch feinere Klassifizierung und sicherere Aussagen zu einer möglichen Sedimentherkunft ermöglichen. Damit ergeben sich außerdem verbesserte Aussagen zu Zusammensetzungen und Entstehungsprozessen der abgelagerten Sedimente. Die Studie verdeutlicht, dass die Sedimentherkunft innerhalb des Untersuchungsgebietes sowie die ablaufenden Prozesse zum Teil stark von lokalen Gegebenheiten abhängen. Die Heterogenität der Geologie und die Größe des Einzugsgebietes sowie die daraus resultierende Komplexität der Sedimentgenese, machen exakte Zuordnungen zu klar definierten Sedimentquellen sehr schwer. Dennoch zeigen die Ergebnisse, dass die Sedimentzufuhr in das Ejina-Becken in erster Linie durch fluviale klastische Sedimente des Heihe aus dem Qilian Shan erfolgt sein muss. Die Untersuchungsergebnisse zeigen jedoch ebenso die Notwendigkeit einer ergänzenden Bearbeitung angrenzender Untersuchungsgebiete, wie beispielsweise den Gobi-Altai im Norden oder den Beishan im Westen, sowie die Verdichtung der Oberflächenbeprobung zur feineren Auflösung von lokalen Sedimentquellen. N2 - The Central Asian natural space, as it presents itself today, is the result of a combination of many different factors over millions of years. However, in the current context of climate change it becoming obvious how strongly material fluxes can change in the short-term and thereby transform the face of the landscape. As a large long-term archive of different fluvial, lacustrine and aeolian sediments, the Gobi Desert in Inner Mongolia (China) represents a significant locality for the reconstruction of local and regional material flows as well as an important source for supra-regional dust transport due to erosion by aeolian processes. This, in connection with its location to the Tibetan Plateau, has moved the Gobi Desert into the focus of climate-historical basic research. Against this background, several German-Chinese expeditions to Ejina Basin (Inner Mongolia) and the Qilian Shan foreland were accomplished between 2011 and 2014. They were part of the BMBF joint program WTZ Central Asia - Monsoon Dynamics & Geo-Ecosystems (Grant No. 03G0814). In the course of these expeditions numerous surface samples from the entire catchment area of the Heihe (Black River) were collected for the determination of potential sediment sources. Additionally, two drillings in the interior of the Ejina Basin were conducted as a continuation of the existing drill-core D100 (see Wünnemann (2005)) and for gathering complementary information on landscape history and supra-regional sediment transfer. The goals of this doctoral thesis are a sedimentological-mineralogical characterization of the study area with regard to potential sediment sources and material fluxes of the Ejina Basin as well as the reconstruction of the sedimentation history of a 19 m sediment drill-core (GN100) drilled in the northern part of the basin. The main focus is on the clarification of the sediment provenance within the drill core as well as the designation of provenance signals and possible sediment sources or sediment transport paths. The methodological approach is based on a multi-proxy approach to characterize the clastic sedimentary facies using field observations, lithological-granulometric and mineralogical-geochemical analyses as well as statistical methods. For the mineralogical investigations of the sediments, a new scanning electron microscopic method for automated particle analysis was used and compared with traditional methods. The synoptic analysis of the granulometric, geochemical and mineralogical findings of the surface sediments result in a logical cascade model with recurring process areas and similar process signals. The results of the extensive granulometric analyses indicate decreasing grain sizes as the distance from the Qilian Shan increases and allow the identification of four textural signals: fluvial sands, dune sands, still water sediments and dusts. They can be used as the basis of interpretation for the grain size analyses of the drill core. This makes it possible to reconstruct the depositional history of the core sediments and to put them in an overall context in conjunction with own and literature-based datings. For the study area four depositional phases can be identified which date back until the time of the Last Glacial Maximum (LGM). During these depositional phases, various phases of activity and stability led to a continuous progradation and overprinting of the alluvial fan. A particularly active phase can be observed between 8 ka and 4 ka BP. During this period there seems to have been a significant increase in alluvial fan dynamics due to increasing fluvial activity. In the periods before and after mainly aeolian processes have led to an overprinting of the alluvial fan. Regarding the mineralogical provenance signals there is a great variability. This reflects the enormous geological heterogeneity of the study area, by which the spatial signals are not very pronounced. Nonetheless, within the catchment three larger areas can be declared which can be considered as possible sediment sources. These are the eastern and western foreland of the Qilian Shan mountains as wells as the Bei Shan in the west of the Ejina basin. They differ, in particular, from strongly diverging chlorite contents in the clay mineral and total mineral fraction. The eastern Qilian Shan foreland is characterized by significantly higher chlorite contents as the primary source for the sediments in the Ejina Basin. This is related to the greenschists, ophiolites and serpentinites in this area. Geochemically, the Cr/Rb-ratio in particular indicates a large variability within the catchment area. In this case its again the eastern Qilian Shan foreland which stands out from the rest of the study area with high values due to its high proportion of mafic rocks which are rich in chromites and spinels. Within the drill core sediments of GN100 the temporal but also the general variability of the sediment provenance according to the surface sediment results cannot be clearly traced. The mineralogical-sedimentological characteristics of the drilled clastic sediments exhibit meantime changes in sediment provenance. However, they are not as pronounced as the source signals within the surface sediments suggest. One reason seems to be the strong mixing of different sediments during transport. The combination of the particle size results with the results of the total and heavy mineralogy indicate that there must have been a phase in the meantime with predominantly aeolian processes.. These processes were connected with a sediment input from the Bei Shan mountains in the west. In addition to the increase in ultrastable heavy minerals such as zirconium and garnet and the decline of opaque heavy minerals, mainly present conditions point to this. The comparison of the traditional heavy mineral analysis (polarized light microscopy) with computer-controlled scanning electron microscopy (short: CCSEM) shows the clear advantage of the modern analysis method. Above all is the significant greater statistical significance of the counting results. In addition, this method can also be used to determine chemical varieties of some heavy minerals, which allows an even finer classification and more reliable conclusions about a possible sediment provenance. Furthermore, better statements can be made about the composition and the development process of the deposited sediments. This thesis shows that the sediment provenance within the study area as well as the ongoing processes partly depend strongly on local conditions. Therefore, the heterogeneity of the geology and the size of the catchment as well as the resulting complexity of the sediment genesis makes it very difficult to make exact assignments to clearly defined sediment sources. Nevertheless, the results indicate a primary input of fluvial clastic sediments of the Heihe coming from the Qilian Shan mountains. However, the findings also indicate the need to complement the study with adjacent study areas such as the Gobi Altai in the north or the Beishan in the west as well as a densification of the surface sampling for a better resolution of possible local sediment sources. KW - Heihe KW - Ejina Becken KW - Gaxun Nur KW - Schwerminerale KW - China KW - CCSEM KW - Herkunftsanalyse KW - Tonminerale KW - Heihe KW - Ejina Basin KW - Gaxun Nur KW - Heavy Minerals KW - China KW - CCSEM KW - Provenance Analysis KW - Clay Minerals Y1 - 2020 ER -