TY - THES A1 - Neugebauer, Ina T1 - Reconstructing climate from the Dead Sea sediment record using high-resolution micro-facies analyses T1 - Klimarekonstruktion an Sedimentkernen des Toten Meeres an Hand hochaufgelöster Mikrofaziesanalysen T2 - Dissertation N2 - The sedimentary record of the Dead Sea is a key archive for reconstructing climate in the eastern Mediterranean region, as it stores the environmental and tectonic history of the Levant for the entire Quaternary. Moreover, the lake is located at the boundary between Mediterranean sub-humid to semi-arid and Saharo-Arabian hyper-arid climates, so that even small shifts in atmospheric circulation are sensitively recorded in the sediments. This DFG-funded doctoral project was carried out within the ICDP Dead Sea Deep Drilling Project (DSDDP) that intended to gain the first long, continuous and high-resolution sediment core from the deep Dead Sea basin. The drilling campaign was performed in winter 2010-11 and more than 700 m of sediments were recovered. The main aim of this thesis was (1) to establish the lithostratigraphic framework for the ~455 m long sediment core from the deep Dead Sea basin and (2) to apply high-resolution micro-facies analyses for reconstructing and better understanding climate variability from the Dead Sea sediments. Addressing the first aim, the sedimentary facies of the ~455 m long deep-basin core 5017-1 were described in great detail and characterised through continuous overview-XRF element scanning and magnetic susceptibility measurements. Three facies groups were classified: (1) the marl facies group, (2) the halite facies group and (3) a group involving different expressions of massive, graded and slumped deposits including coarse clastic detritus. Core 5017-1 encompasses a succession of four main lithological units. Based on first radiocarbon and U-Th ages and correlation of these units to on-shore stratigraphic sections, the record comprises the last ca 220 ka, i.e. the upper part of the Amora Formation (parts of or entire penultimate interglacial and glacial), the last interglacial Samra Fm. (~135-75 ka), the last glacial Lisan Fm. (~75-14 ka) and the Holocene Ze’elim Formation. A major advancement of this record is that, for the first time, also transitional intervals were recovered that are missing in the exposed formations and that can now be studied in great detail. Micro-facies analyses involve a combination of high-resolution microscopic thin section analysis and µXRF element scanning supported by magnetic susceptibility measurements. This approach allows identifying and characterising micro-facies types, detecting event layers and reconstructing past climate variability with up to seasonal resolution, given that the analysed sediments are annually laminated. Within this thesis, micro-facies analyses, supported by further sedimentological and geochemical analyses (grain size, X-ray diffraction, total organic carbon and calcium carbonate contents) and palynology, were applied for two time intervals: (1) The early last glacial period ~117-75 ka was investigated focusing on millennial-scale hydroclimatic variations and lake level changes recorded in the sediments. Thereby, distinguishing six different micro-facies types with distinct geochemical and sedimentological characteristics allowed estimating relative lake level and water balance changes of the lake. Comparison of the results to other records in the Mediterranean region suggests a close link of the hydroclimate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern hemisphere ice sheets during the early last glacial period. (2) A mostly annually laminated late Holocene section (~3700-1700 cal yr BP) was analysed in unprecedented detail through a multi-proxy, inter-site correlation approach of a shallow-water core (DSEn) and its deep-basin counterpart (5017-1). Within this study, a ca 1500 years comprising time series of erosion and dust deposition events was established and anchored to the absolute time-scale through 14C dating and age modelling. A particular focus of this study was the characterisation of two dry periods, from ~3500 to 3300 and from ~3000 to 2400 cal yr BP, respectively. Thereby, a major outcome was the coincidence of the latter dry period with a period of moist and cold climate in Europe related to a Grand Solar Minimum around 2800 cal yr BP and an increase in flood events despite overall dry conditions in the Dead Sea region during that time. These contrasting climate signatures in Europe and at the Dead Sea were likely linked through complex teleconnections of atmospheric circulation, causing a change in synoptic weather patterns in the eastern Mediterranean. In summary, within this doctorate the lithostratigraphic framework of a unique long sediment core from the deep Dead Sea basin is established, which serves as a base for any further high-resolution investigations on this core. It is demonstrated in two case studies that micro-facies analyses are an invaluable tool to understand the depositional processes in the Dead Sea and to decipher past climate variability in the Levant on millennial to seasonal time-scales. Hence, this work adds important knowledge helping to establish the deep Dead Sea record as a key climate archive of supra-regional significance. N2 - Die Sedimente des Toten Meeres stellen ein wichtiges Archiv für Klimarekonstruktionen im ostmediterranen Raum dar, da die gesamte quartäre Umwelt- und Tektonikgeschichte der Levante darin gespeichert ist. Außerdem führt die Lage des Sees im Grenzbereich zwischen mediterranem subhumidem bis semiaridem Klima und saharo-arabischem hyperaridem Klima dazu, dass selbst kleine Veränderungen der atmosphärischen Zirkulation sensibel in den Sedimenten verzeichnet werden. Diese Doktorarbeit wurde von der DFG finanziert und im Rahmen des ICDP Dead Sea Deep Drilling Project (DSDDP) durchgeführt, welches sich zur Aufgabe gestellt hat, den ersten langen, kontinuierlichen und hoch aufgelösten Sedimentkern vom tiefen Becken des Toten Meeres zu erlangen. Die Bohrkampagne fand im Winter 2010-11 statt, bei der mehr als 700 m Sedimente geteuft wurden. Die Zielsetzung dieser Doktorarbeit beinhaltete (1) den lithostratigraphischen Rahmen für den ~455 m langen Sedimentkern vom tiefen Becken des Toten Meeres zu erarbeiten und (2) hoch aufgelöste Mikrofazies-Analysen an den Sedimenten des Toten Meeres anzuwenden, um Klimavariabilität rekonstruieren und besser verstehen zu können. Bezüglich erst genannter Zielsetzung wurden die Sedimentfazies des ~455 m langen Kerns 5017 1 vom tiefen Becken detailliert beschrieben und an Hand kontinuierlicher XRF Elementscanner-Daten und Messungen der magnetischen Suszeptibilität charakterisiert. Drei Faziesgruppen wurden unterschieden: (1) die Mergel-Faziesgruppe, (2) die Halit-Faziesgruppe und (3) eine verschiedene Ausprägungen massiver, gradierter oder umgelagerter Ablagerungen sowie grob-klastischen Detritus umfassende Gruppe. Der Kern 5017-1 ist durch die Abfolge von vier lithologischen Haupt-Einheiten charakterisiert. Basierend auf ersten Radiokarbon- und U Th- Altern und Korrelation dieser Einheiten mit den am Ufer aufgeschlossenen stratigraphischen Abschnitten, umfasst der Datensatz die letzten ca 220 Tausend Jahre (ka), einschließlich des oberen Abschnitts der Amora-Formation (Teile von oder gesamtes vorletztes Interglazial und Glazial), die Samra-Fm. des letzten Interglazials (~135-75 ka), die Lisan-Fm. des letzten Glazials (~75-14 ka) und die holozäne Ze’elim-Formation. Ein entscheidender Fortschritt dieses Records ist, dass erstmals Übergangsbereiche erfasst wurden, die in den aufgeschlossenen Formationen fehlen und nun detailliert studiert werden können. Mikrofazies-Analysen umfassen eine Kombination hoch aufgelöster mikroskopischer Dünnschliff-Analysen und µXRF Elementscanning, die durch die Messung der magnetischen Suszeptibilität unterstützt werden. Dieser Ansatz erlaubt es, Mikrofazies-Typen zu identifizieren und zu charakterisieren, Eventlagen aufzuzeichnen und die Klimavariabilität der Vergangenheit mit bis zu saisonaler Auflösung zu rekonstruieren, vorausgesetzt, dass die zu analysierenden Sedimente jährlich laminiert sind. Im Rahmen dieser Doktorarbeit wurden Mikrofazies-Analysen für zwei Zeitabschnitte angewendet, unterstützt durch weitere sedimentologische und geochemische Analysen (Korngrößen, Röntgen-Diffraktometrie, gesamter organischer Kohlenstoff- und Kalziumkarbonat-Gehalte) sowie Palynologie. (1) Das frühe letzte Glazial ~117-75 ka wurde hinsichtlich hydroklimatischer Variationen und in den Sedimenten verzeichneter Seespiegeländerungen auf tausendjähriger Zeitskala untersucht. Dabei wurden sechs verschiedene Mikrofazies-Typen mit unterschiedlichen geochemischen und sedimentologischen Charakteristika bestimmt, wodurch relative Änderungen des Seespiegels und der Wasserbilanz des Sees abgeschätzt werden konnten. Ein Vergleich der Ergebnisse mit anderen Records aus dem Mittelmeerraum lässt vermuten, dass das Hydroklima der Levante eng mit dem nordatlantischen und mediterranen Klima während der Zeit des Aufbaus nordhemisphärischer Eisschilde im frühen letzten Glazial verknüpft war. (2) Ein weitestgehend jährlich laminierter spätholozäner Abschnitt (~3700-1700 kal. J. BP – kalibrierte Jahre vor heute) wurde in größtem Detail an Hand eines Multiproxie-Ansatzes und durch Korrelation eines Flachwasser-Bohrkerns (DSEn) mit seinem Gegenstück aus dem tiefen Becken (5017-1) untersucht. In dieser Studie wurde eine ca. 1500 Jahre umfassende Zeitreihe von Erosions- und Staubablagerungs-Ereignissen erstellt und an Hand von 14C-Datierung und Altersmodellierung mit der absoluten Zeitskala verankert. Ein besonderer Fokus dieser Studie lag in der Charakterisierung zweier Trockenphasen, von ~3500 bis 3300 beziehungsweise von ~3000 bis 2400 kal. J. BP. Dabei war ein wichtiges Resultat, dass letztgenannte Trockenphase mit einer Phase feuchten und kühlen Klimas in Europa, in Zusammenhang mit einem solaren Minimum um 2800 kal. J. BP, zusammen fällt und dass trotz der generell trockeneren Bedingungen in der Toten Meer Region zu dieser Zeit verstärkt Flutereignisse verzeichnet wurden. Diese unterschiedlichen Klimasignaturen in Europa und am Toten Meer waren wahrscheinlich durch komplexe Telekonnektionen der atmosphärischen Zirkulation verknüpft, was eine Veränderung synoptischer Wettermuster im ostmediterranen Raum zur Folge hatte. Zusammenfassend lässt sich sagen, dass innerhalb dieser Doktorarbeit der lithostratigraphische Rahmen eines einzigartigen, langen Sedimentkerns vom tiefen Becken des Toten Meeres erstellt wurde, welcher als Basis für jegliche weitere hoch aufgelöste Untersuchungen an diesem Kern dient. In zwei Fallstudien wird demonstriert, dass Mikrofazies-Analysen ein unschätzbares Werkzeug darstellen, Ablagerungsprozesse im Toten Meer zu verstehen und die Klimavariabilität der Vergangenheit in der Levante auf tausendjährigen bis saisonalen Zeitskalen zu entschlüsseln. Diese Arbeit enthält daher wichtige Erkenntnisse, die dabei helfen die Schlüsselstellung des Records vom tiefen Toten Meer als Klimaarchiv überregionaler Bedeutung zu etablieren. KW - Dead Sea KW - palaeoclimate KW - lake sediments KW - varves KW - Totes Meer KW - Paläoklima KW - Seesedimente KW - Warven Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85266 ER - TY - THES A1 - Kämpf, Lucas T1 - Extreme events in geoarchives T1 - Extremereignisse in Geoarchiven BT - deciphering processes of detrital flood layer formation in lake sediments BT - Bildung von Hochwasserlagen in Seesedimenten N2 - A main limitation in the field of flood hydrology is the short time period covered by instrumental flood time series, rarely exceeding more than 50 to 100 years. However, climate variability acts on short to millennial time scales and identifying causal linkages to extreme hydrological events requires longer datasets. To extend instrumental flood time series back in time, natural geoarchives are increasingly explored as flood recorders. Therefore, annually laminated (varved) lake sediments seem to be the most suitable archives since (i) lake basins act as natural sediment traps in the landscape continuously recording land surface processes including floods and (ii) individual flood events are preserved as detrital layers intercalated in the varved sediment sequence and can be dated with seasonal precision by varve counting. The main goal of this thesis is to improve the understanding about hydrological and sedimentological processes leading to the formation of detrital flood layers and therewith to contribute to an improved interpretation of lake sediments as natural flood archives. This goal was achieved in two ways: first, by comparing detrital layers in sediments of two dissimilar peri-Alpine lakes, Lago Maggiore in Northern Italy and Mondsee in Upper Austria, with local instrumental flood data and, second, by tracking detrital layer formation during floods by a combined hydro-sedimentary monitoring network at Lake Mondsee spanning from the rain fall to the deposition of detrital sediment at the lake floor. Successions of sub-millimetre to 17 mm thick detrital layers were detected in sub-recent lake sediments of the Pallanza Basin in the western part of Lago Maggiore (23 detrital layers) and Lake Mondsee (23 detrital layers) by combining microfacies and high-resolution micro X-ray fluorescence scanning techniques (µ-XRF). The detrital layer records were dated by detailed intra-basin correlation to a previously dated core sequence in Lago Maggiore and varve counting in Mondsee. The intra-basin correlation of detrital layers between five sediment cores in Lago Maggiore and 13 sediment cores in Mondsee allowed distinguishing river runoff events from local erosion. Moreover, characteristic spatial distribution patterns of detrital flood layers revealed different depositional processes in the two dissimilar lakes, underflows in Lago Maggiore as well as under- and interflows in Mondsee. Comparisons with runoff data of the main tributary streams, the Toce River at Lago Maggiore and the Griesler Ache at Mondsee, revealed empirical runoff thresholds above which the deposition of a detrital layer becomes likely. Whereas this threshold is the same for the whole Pallanza Basin in Lago Maggiore (600 m3s-1 daily runoff), it varies within Lake Mondsee. At proximal locations close to the river inflow detrital layer deposition requires floods exceeding a daily runoff of 40 m3s-1, whereas at a location 2 km more distal an hourly runoff of 80 m3s-1 and at least 2 days with runoff above 40 m3s-1 are necessary. A relation between the thickness of individual deposits and runoff amplitude of the triggering events is apparent for both lakes but is obviously further influenced by variable influx and lake internal distribution of detrital sediment. To investigate processes of flood layer formation in lake sediments, hydro-sedimentary dynamics in Lake Mondsee and its main tributary stream, Griesler Ache, were monitored from January 2011 to December 2013. Precipitation, discharge and turbidity were recorded continuously at the rivers outlet to the lake and compared to sediment fluxes trapped close to the lake bottom on a basis of three to twelve days and on a monthly basis in three different water depths at two locations in the lake basin, in a distance of 0.9 (proximal) and 2.8 km (distal) to the Griesler Ache inflow. Within the three-year observation period, 26 river floods of different amplitude (10-110 m3s-1) were recorded resulting in variable sediment fluxes to the lake (4-760 g m-2d-1). Vertical and lateral variations in flood-related sedimentation during the largest floods indicate that interflows are the main processes of lake internal sediment transport in Lake Mondsee. The comparison of hydrological and sedimentological data revealed (i) a rapid sedimentation within three days after the peak runoff in the proximal and within six to ten days in the distal lake basin, (ii) empirical runoff thresholds for triggering sediment flux at the lake floor increasing from the proximal (20 m3s-1) to the distal lake basin (30 m3s-1) and (iii) factors controlling the amount of detrital sediment deposition at a certain location in the lake basin. The total influx of detrital sediment is mainly driven by runoff amplitude, catchment sediment availability and episodic sediment input by local sediment sources. A further role plays the lake internal sediment distribution which is not the same for each event but is favoured by flood duration and the existence of a thermocline and, therewith, the season in which a flood occurred. In summary, the studies reveal a high sensitivity of lake sediments to flood events of different intensity. Certain runoff amplitudes are required to supply enough detrital material to form a visible detrital layer at the lake floor. Reasonable are positive feedback mechanisms between rainfall, runoff, erosion, fluvial sediment transport capacity and lake internal sediment distribution. Therefore, runoff thresholds for detrital layer formation are site-specific due to different lake-catchment characteristics. However, the studies also reveal that flood amplitude is not the only control for the amount of deposited sediment at a certain location in the lake basin even for the strongest flood events. The sediment deposition is rather influenced by a complex interaction of catchment and in-lake processes. This means that the coring location within a lake basin strongly determines the significance of a flood layer record. Moreover, the results show that while lake sediments provide ideal archives for reconstructing flood frequencies, the reconstruction of flood amplitudes is a more complex issue and requires detailed knowledge about relevant catchment and in-lake sediment transport and depositional processes. N2 - Die Erforschung von Hochwasserereignissen, ihrer Wiederkehrhäufigkeiten und Entwicklung im Zuge des prognostizierten Klimawandels wird durch die kurzen instrumentellen Datenreihen stark begrenzt. Diese umfassen selten mehr als die letzten 50 bis 100 Jahre. Das Klima verändert sich jedoch in kurzen bis hin zu sehr langen Zeiträumen, welche mehrere tausend Jahre umfassen können. Die Feststellung von Zusammenhängen zwischen Klimaänderungen und dem Auftreten von Hochwasserereignissen bedarf daher längerer Datenreihen. Aus diesem Grund sind in den letzten Jahren Geoarchive als Zeugen vergangener Hochwasserereignisse stärker in den Fokus der Forschung gerückt. Besonders geeignete Archive sind jährlich geschichtete Seesedimente, da Seen natürliche Senken für Stoffflüsse aus der Landschaft darstellen. Sedimenteinträge durch Hochwasserereignisse führen zur Bildung charakteristischer Lagen am Seeboden. Diese Eintragslagen können im Seesediment untersucht und aufgrund der Jahresschichtung mit saisonaler Präzision datiert werden. Das Ziel der vorliegenden Arbeit ist es, das Verständnis über jene Prozesse, die zur Bildung solcher Hochwasserlagen in Seesedimenten führen, zu erweitern und damit zu einer verbesserten Interpretation von Seesedimenten als natürliche Hochwasserarchive beizutragen. Dieses Ziel wurde auf zwei Wegen verfolgt. Zum einen wurden einzelne Hochwasserlagen in zwei unterschiedlichen Seen, Lago Maggiore in Norditalien und Mondsee in Oberösterreich, mit instrumentellen Hochwasserdaten verglichen und zum anderen wurden Prozesse, die zur Bildung von Hochwasserlagen führen, durch ein umfassendes Messnetz im Mondsee überwacht. Für den Vergleich der Hochwasserlagen mit instrumentellen Hochwasserdaten wurden zunächst die zum Teil unter einem Millimeter dünnen Sedimentlagen in den obersten Sedimentschichten aus dem Mondsee und der Pallanzabucht im Westen des Lago Maggiore mittels Mikroskopie und geochemischen Verfahren untersucht. Das Alter jeder einzelnen Lage wurde durch Zählung der Jahresschichten im Mondsee (23 Lagen zwischen 1976 und 2005) und im Lago Maggiore durch detaillierte Korrelation zu einer bereits datierten Kernsequenz (23 Lagen zwischen 1965 und 2006) bestimmt. Die Verbindung der einzelnen Hochwasserlagen zwischen fünf Sedimentkernen im Lago Maggiore und 13 Sedimentkernen im Mondsee zeigte verschiedene räumliche Verbreitungsmuster von Hochwasserlagen auf. Das heißt, dass die Prozesse, die zur Bildung der Hochwasserlagen führen in den beiden Seen unterschiedlich sind. Im Lago Maggiore wird das eingetragene Sediment durch Ströme am Seeboden transportiert. Dagegen erfolgt der Sedimenttransport im Mondsee im oberen Bereich der Wassersäule entlang der Sprungschicht, wo die Temperatur- und Dichteunterschiede im See am größten sind. Weiterhin wurden die Hochwasserlagen mit instrumentellen Abflusszeitreihen der Hauptzuflüsse, dem Toce am Lago Maggiore und der Griesler Ache am Mondsee, verglichen. Die Vergleiche zeigten nicht nur, dass die Hochwasserlagen zeitgleich mit erhöhten Abflüssen auftreten, sondern auch, dass die Ablagerung erst ab einem bestimmten Abflusswert wahrscheinlich wird. Die meisten Hochwasserlagen im Lago Maggiore korrelieren mit Hochwasserereignissen, die einen Tagesabfluss von 600 m3s-1 überschreiten. Im Mondsee ist der Abflusswert zum einen geringer als im Lago Maggiore und zum anderen nicht im ganzen Seebecken gleich, sondern steigt vom Delta (Tagesabfluss: 40 m3s-1) zur Seemitte hin an (stündlicher Abfluss: 80 m3s-1, 2 Tage über 40 m3s-1 Tagesabfluss). Weiterhin wurde für beide Seen eine Beziehung zwischen der Stärke des Abflusses und der Dicke der Hochwasserlagen festgestellt. Diese ist allerdings stark durch Variationen im Sedimenteintrag und in der Verbreitung innerhalb des Seebeckens beeinflusst. Um die Prozesse, welche zur Bildung von Hochwasserlagen führen, besser zu verstehen, wurden im Mondsee und dem Hauptzufluss, der Griesler Ache, verschiedene Messparameter von 2011 bis 2013 aufgezeichnet. Der Niederschlag wurde an verschiedenen Stationen im Einzugsgebiet und der Abfluss sowie die Trübung des Flusswassers am Austritt der Griesler Ache in den Mondsee kontinuierlich gemessen. Im See wurde an zwei Stellen, in 0.9 km und in 2.8 km Entfernung zum Delta der Griesler Ache, Sediment mittels Sedimentfallen gesammelt, zum einen nahe dem Seeboden mit einer zeitlichen Auflösung von drei bis zwölf Tagen und zum anderen monatlich in drei unterschiedlichen Wassertiefen. Innerhalb des dreijährigen Messzeitraums wurden 26 Hochwasserereignisse mit unterschiedlicher Abflussstärke (10-110 m3s-1) aufgezeichnet, die einen unterschiedlichen Sedimenteintrag am Seeboden auslösten (4-760 g m-2d-1). Die räumliche Verteilung des Sediments nach den Hochwasserereignissen deutet wieder auf einen Sedimenttransport im oberen Teil der Wassersäule hin. Durch den Vergleich von Abflussdaten der Griesler Ache und der gefangenen Sedimentmenge für jedes einzelne der 26 Ereignisse konnte zunächst die Zeitspanne zwischen Hochwasserereignis und Sedimentation am Seeboden ermittelt werden. Nahe dem Zufluss wird das Sediment zum größten Teil bereits innerhalb von drei Tagen nach der Hochwasserspitze abgelagert. In der Seemitte dauert die Sedimentation sechs bis zehn Tage. Des Weiteren wurden, ähnlich wie bereits bei der Untersuchung der Hochwasserlagen festgestellt, bestimmte Abflusswerte detektiert über welchen ein erhöhter Sedimenteintrag am Seeboden gemessen wurde. Nahe dem Flussdelta führen Hochwasser mit mehr als 20 m3s-1 Spitzenabfluss zum erhöhten Sedimenteintrag, während in der Seemitte ein Spitzenabfluss von 30 m3s-1 notwendig ist. Obwohl ein statistischer Zusammenhang zwischen der Hochwasserstärke und der abgelagerten Sedimentmenge besteht, wurde gezeigt, dass weitere Faktoren die Sedimentation am Seeboden beeinflussen. Der Sedimenteintrag in den See wird neben der Abflussstärke durch die Sedimentverfügbarkeit im Einzugsgebiet und episodischen Sedimenteinträgen von lokalen Quellen bestimmt. Eine weitere Rolle spielt die Verteilung des Sediments innerhalb des Seebeckens. Diese ist nicht für jedes Hochwasserereignis gleich, sondern wird durch die Dauer des Hochwasserereignisses und die Existenz der Sprungschicht in den Sommermonaten limitiert. Insgesamt zeigen die Untersuchungen, dass Seesedimente Hochwasserereignisse unterschiedlicher Stärke aufzeichnen. Eine bestimmte Hochwasserstärke ist notwendig, damit ausreichend Sediment für eine sichtbare Hochwasserlage am Seeboden abgelagert wird. Die Ursache ist der Einfluss von Niederschlags- und Abflussstärke auf Erosion, Sedimenttransport im Fluss und die Sedimentverteilung innerhalb des Seebeckens. Da diese Faktoren in unterschiedlichen Seen verschieden wirken, sind die Abflusswerte über denen es zur Hochwasserlagenbildung kommt, in jedem See verschieden. Die Untersuchungen dieser Arbeit zeigen weiterhin, dass die Menge an abgelagertem Sediment am Seeboden nicht nur durch die Abflussstärke bestimmt wird. Die Sedimentation ist vielmehr durch die komplexe Wechselwirkung von Prozessen im Einzugsgebiet und innerhalb des Sees kontrolliert. Dass bedeutet, dass jene Stelle innerhalb eines Seebeckens, an welcher ein Sedimentkern entnommen wird, die Güte eines Hochwasserarchivs maßgeblich beeinflusst. Weiterhin zeigen die Ergebnisse, dass Seesedimente für die Rekonstruktion von Hochwasserhäufigkeiten ideale Archive darstellen. Die Ableitung von Hochwasserstärken aus der Dicke einzelner Hochwasserlagen ist allerdings komplexer und setzt eine detaillierte Kenntnis der relevanten Transport- und Ablagerungsprozesse im See und seinem Einzugsgebiet voraus. KW - lake sediments KW - flood reconstruction KW - sediment transport KW - environmental monitoring KW - Seesedimente KW - Hochwasserrekonstruktion KW - Sedimenttransport KW - Umweltmonitoring Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85961 ER -