TY - JOUR A1 - Kahmen, Ansgar A1 - Sachse, Dirk A1 - Arndt, Stefan K. A1 - Tu, Kevin P. A1 - Farrington, Heraldo A1 - Vitousek, Peter M. A1 - Dawson, Todd E. T1 - Cellulose delta O-18 is an index of leaf-to-air vapor pressure difference (VPD) in tropical plants JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Cellulose in plants contains oxygen that derives in most cases from precipitation. Because the stable oxygen isotope composition, delta O-18, of precipitation is associated with environmental conditions, cellulose delta O-18 should be as well. However, plant physiological models using delta O-18 suggest that cellulose delta O-18 is influenced by a complex mix of both climatic and physiological drivers. This influence complicates the interpretation of cellulose delta O-18 values in a paleo-context. Here, we combined empirical data analyses with mechanistic model simulations to i) quantify the impacts that the primary climatic drivers humidity (e(a)) and air temperature (T-air) have on cellulose delta O-18 values in different tropical ecosystems and ii) determine which environmental signal is dominating cellulose delta O-18 values. Our results revealed that e(a) and T-air equally influence cellulose delta O-18 values and that distinguishing which of these factors dominates the delta O-18 values of cellulose cannot be accomplished in the absence of additional environmental information. However, the individual impacts of e(a) and T-air on the delta O-18 values of cellulose can be integrated into a single index of plant-experienced atmospheric vapor demand: the leaf-to-air vapor pressure difference (VPD). We found a robust relationship between VPD and cellulose delta O-18 values in both empirical and modeled data in all ecosystems that we investigated. Our analysis revealed therefore that delta O-18 values in plant cellulose can be used as a proxy for VPD in tropical ecosystems. As VPD is an essential variable that determines the biogeochemical dynamics of ecosystems, our study has applications in ecological-, climate-, or forensic-sciences. KW - stable isotopes KW - plant-water relations KW - paleoecology KW - climate change KW - Hawaii Y1 - 2011 U6 - https://doi.org/10.1073/pnas.1018906108 SN - 0027-8424 VL - 108 IS - 5 SP - 1981 EP - 1986 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Geyer, Juliane A1 - Kiefer, Iris A1 - Kreft, Stefan A1 - Chavez, Veronica A1 - Salafsky, Nick A1 - Jeltsch, Florian A1 - Ibisch, Pierre L. T1 - Classification of climate-change-induced stresses on biological diversity JF - Conservation biology : the journal of the Society for Conservation Biology N2 - Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. KW - adaptation of conservation strategies KW - adaptive management KW - climate change KW - conservation planning KW - conservation targets KW - hierarchical framework KW - threats to biological diversity Y1 - 2011 U6 - https://doi.org/10.1111/j.1523-1739.2011.01676.x SN - 0888-8892 VL - 25 IS - 4 SP - 708 EP - 715 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 JF - Molecular ecology N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2015 U6 - https://doi.org/10.1111/mec.13121 SN - 0962-1083 SN - 1365-294X VL - 24 IS - 7 SP - 1510 EP - 1522 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Kahl, Sandra M. A1 - Lenhard, Michael A1 - Joshi, Jasmin Radha T1 - Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris JF - The journal of ecology N2 - The adaptation of plants to future climatic conditions is crucial for their survival. Not surprisingly, phenotypic responses to climate change have already been observed in many plant populations. These responses may be due to evolutionary adaptive changes or phenotypic plasticity. Especially plant species with a wide geographic range are either expected to show genetic differentiation in response to differing climate conditions or to have a high phenotypic plasticity. We investigated phenotypic responses and plasticity as an estimate of the adaptive potential in the widespread species Silene vulgaris. In a greenhouse experiment, 25 European populations covering a geographic range from the Canary Islands to Sweden were exposed to three experimental precipitation and two temperature regimes mimicking a possible climate-change scenario for central Europe. We hypothesized that southern populations have a better performance under high temperature and drought conditions, as they are already adapted to a comparable environment. We found that our treatments significantly influenced the plants, but did not reveal a latitudinal difference in response to climate treatments for most plant traits. Only flower number showed a stronger plasticity in northern European populations (e.g. Swedish populations) where numbers decreased more drastically with increased temperature and decreased precipitation treatment. Synthesis. The significant treatment response in Silene vulgaris, independent of population origin - except for the number of flowers produced - suggests a high degree of universal phenotypic plasticity in this widely distributed species. This reflects the likely adaptation strategy of the species and forms the basis for a successful survival strategy during upcoming climatic changes. However, as flower number, a strongly fitness-related trait, decreased more strongly in northern populations under a climate-change scenario, there might be limits to adaptation even in this widespread, plastic species. KW - climate change KW - global change ecology KW - latitudinal gradient KW - local adaptation KW - phenotypic plasticity KW - plant performance KW - temperature increase Y1 - 2019 U6 - https://doi.org/10.1111/1365-2745.13133 SN - 0022-0477 SN - 1365-2745 VL - 107 IS - 4 SP - 1918 EP - 1930 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Souto-Veiga, Rodrigo A1 - Groeneveld, Juergen A1 - Enright, Neal J. A1 - Fontaine, Joseph B. A1 - Jeltsch, Florian T1 - Declining pollination success reinforces negative climate and fire change impacts in a serotinous, fire-killed plant JF - Plant ecology : an international journal N2 - Climate change projections predict that Mediterranean-type ecosystems (MTEs) are becoming hotter and drier and that fires will become more frequent and severe. While most plant species in these important biodiversity hotspots are adapted to hot, dry summers and recurrent fire, the Interval Squeeze framework suggests that reduced seed production (demographic shift), reduced seedling establishment after fire (post fire recruitment shift), and reduction in the time between successive fires (fire interval shift) will threaten fire killed species under climate change. One additional potential driver of accelerated species decline, however, has not been considered so far: the decrease in pollination success observed in many ecosystems worldwide has the potential to further reduce seed accumulation and thus population persistence also in these already threatened systems. Using the well-studied fire-killed and serotinous shrub species Banksia hookeriana as an example, we apply a new spatially implicit population simulation model to explore population dynamics under past (1988-2002) and current (2003-2017) climate conditions, deterministic and stochastic fire regimes, and alternative scenarios of pollination decline. Overall, model results suggest that while B. hookeriana populations were stable under past climate conditions, they will not continue to persist under current (and prospective future) climate. Negative effects of climatic changes and more frequent fires are reinforced by the measured decline in seed set leading to further reduction in the mean persistence time by 12-17%. These findings clearly indicate that declining pollination rates can be a critical factor that increases further the pressure on the persistence of fire-killed plants. Future research needs to investigate whether other fire-killed species are similarly threatened, and if local population extinction may be compensated by recolonization events, facilitating persistence in spatially structured meta-communities. KW - climate change KW - fire frequency KW - interval squeeze KW - pollination KW - process-based simulation model KW - mediterranean-type ecosystem Y1 - 2022 U6 - https://doi.org/10.1007/s11258-022-01244-7 SN - 1385-0237 SN - 1573-5052 VL - 223 IS - 7 SP - 863 EP - 881 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Lecourieux, Fatma A1 - Kappel, Christian A1 - Pieri, Philippe A1 - Charon, Justine A1 - Pillet, Jeremy A1 - Hilbert, Ghislaine A1 - Renaud, Christel A1 - Gomes, Eric A1 - Delrot, Serge A1 - Lecourieux, David T1 - Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries JF - Frontiers in plant science N2 - Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+8 degrees C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, raminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HI induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation. KW - grapevine KW - berry development KW - microclimate KW - high temperature KW - microarrays KW - metabolomics/metabolite profiling KW - climate change Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00053 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Wieczorek, Mareike A1 - Kruse, Stefan A1 - Epp, Laura Saskia A1 - Kolmogorov, Alexei A1 - Nikolaev, Anatoly N. A1 - Heinrich, Ingo A1 - Jeltsch, Florian A1 - Pestryakova, Luidmila Agafyevna A1 - Zibulski, Romy A1 - Herzschuh, Ulrike T1 - Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study JF - Ecology : a publication of the Ecological Society of America N2 - Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future. KW - climate change KW - closed forest KW - dendroecology KW - forest change KW - latitude KW - recruitment KW - tundra KW - vegetation model Y1 - 2017 U6 - https://doi.org/10.1002/ecy.1887 SN - 0012-9658 SN - 1939-9170 VL - 98 SP - 2343 EP - 2355 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wasof, Safaa A1 - Lenoir, Jonathan A1 - Gallet-Moron, Emilie A1 - Jamoneau, Aurelien A1 - Brunet, Jörg A1 - Cousins, Sara A. O. A1 - De Frenne, Pieter A1 - Diekmann, Martin A1 - Hermy, Martin A1 - Kolb, Annette A1 - Liira, Jaan A1 - Verheyen, Kris A1 - Wulf, Monika A1 - Decocq, Guillaume T1 - Ecological niche shifts of understorey plants along a latitudinal gradient of temperate forests in north-western Europe JF - Global ecology and biogeography : a journal of macroecology N2 - Aim In response to environmental changes and to avoid extinction, species may either track suitable environmental conditions or adapt to the modified environment. However, whether and how species adapt to environmental changes remains unclear. By focusing on the realized niche (i.e. the actual space that a species inhabits and the resources it can access as a result of limiting biotic factors present in its habitat), we here examine shifts in the realized-niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) of 26 common and widespread forest understorey plants across their distributional ranges. Location Temperate forests along a ca. 1800-km-long latitudinal gradient from northern France to central Sweden and Estonia. Methods We derived species' realized-niche width from a -diversity metric, which increases if the focal species co-occurs with more species. Based on the concept that species' scores in a detrended correspondence analysis (DCA) represent the locations of their realized-niche positions, we developed a novel approach to run species-specific DCAs allowing the focal species to shift its realized-niche position along the studied latitudinal gradient while the realized-niche positions of other species were held constant. Results None of the 26 species maintained both their realized-niche width and position along the latitudinal gradient. Few species (9 of 26: 35%) shifted their realized-niche width, but all shifted their realized-niche position. With increasing latitude, most species (22 of 26: 85%) shifted their realized-niche position for soil nutrients and pH towards nutrient-poorer and more acidic soils. Main conclusions Forest understorey plants shifted their realized niche along the latitudinal gradient, suggesting local adaptation and/or plasticity. This macroecological pattern casts doubt on the idea that the realized niche is stable in space and time, which is a key assumption of species distribution models used to predict the future of biodiversity, hence raising concern about predicted extinction rates. KW - Beta diversity KW - climate change KW - detrended correspondence analyses KW - Ellenberg indicator values KW - forest understorey plant species KW - niche optimum KW - niche width KW - plant community KW - realized niche Y1 - 2013 U6 - https://doi.org/10.1111/geb.12073 SN - 1466-822X VL - 22 IS - 10 SP - 1130 EP - 1140 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schwarzer, Christian A1 - Joshi, Jasmin Radha T1 - Ecotypic differentiation, hybridization and clonality facilitate the persistence of a cold-adapted sedge in European bogs JF - Biological journal of the Linnean Society : a journal of evolution N2 - Recent research has shown that many cold-adapted species survived the last glacial maximum (LGM) in northern refugia. Whether this evolutionary history has had consequences for their genetic diversity and adaptive potential remains unknown. We sampled 14 populations of Carex limosa, a sedge specialized to bog ecosystems, along a latitudinal gradient from its Scandinavian core to the southern lowland range-margin in Germany. Using microsatellite and experimental common-garden data, we evaluated the impacts of global climate change along this gradient and assessed the conservation status of the southern marginal populations. Microsatellite data revealed two highly distinct genetic groups and hybrid individuals. In our common-garden experiment, the two groups showed divergent responses to increased nitrogen/phosphorus (N/P) availability, suggesting ecotypic differentiation. Each group formed genetically uniform populations at both northern and southern sampling areas. Mixed populations occurred throughout our sampling area, an area that was entirely glaciated during the LGM. The fragmented distribution implies allopatric divergence at geographically separated refugia that putatively differed in N/P availability. Molecular data and an observed low hybrid fecundity indicate the importance of clonal reproduction for hybrid populations. At the southern range-margin, however, all populations showed effects of clonality, lowered fecundity and low competitiveness, suggesting abiotic and biotic constraints to population persistence. KW - biogeography KW - bog/mire plants KW - Carex limosa KW - climate change KW - glacial divergence KW - global change KW - leading/trailing edge KW - population differentiation KW - sexual/asexual reproduction Y1 - 2019 U6 - https://doi.org/10.1093/biolinnean/blz141 SN - 0024-4066 SN - 1095-8312 VL - 128 IS - 4 SP - 909 EP - 925 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Vindas-Picado, José A1 - Yaney-Keller, Adam A1 - St. Andrews, Laura A1 - Panagopoulou, Aliki A1 - Santidrián Tomillo, Pilar T1 - Effectiveness of shading to mitigate the impact of high temperature on sea turtle clutches considering the effect on primary sex ratios JF - Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change N2 - Developmental success of sea turtle clutches depends on incubation temperature, which also determines sex ratio of hatchlings. As global temperatures are rising, several studies have proposed mitigation strategies such as irrigation and shading to increase hatching success. Our study expands upon this research and measures the effects of using boxes with different degrees of shade coverage (50%, 80%, and 90%) on sand temperature and water content. Boxes were fully covered with fabric in 2017/2018 (top and sides) but were side open in 2018/2019. We took measurements at olive ridley (Lepidochelys olivacea) and leatherback (Dermochelys coriacea) turtle nest depths (45 and 75 cm) at Playa Grande, Costa Rica. Shading reduced temperature by up to 0.8 degrees C and up to 0.4 degrees C at 45 cm and 75 cm, respectively. There were statistically significant differences between shading and control treatments at both depths, but differences between shade treatments were only significant when using side open boxes, possibly due to air flow. Shading had no effect on water content. While the impact of using shaded boxes on temperature was low, the potential impact on primary sex ratios was large. If shading were applied to leatherback clutches, the percentage of female hatchlings could vary by up to 50%, with a maximum difference around the pivotal temperature (temperature with 1:1 sex ratio). Shading can be useful to increase hatching success, but we recommend avoiding it at temperatures within the transitional range (temperatures that produce both sexes), or using it only during the last third of incubation, when sex is already determined. As global warming will likely continue, understanding potential impact and effectiveness of mitigation strategies may be critical for the survival of threatened sea turtle populations. KW - climate mitigation KW - climate change KW - hatchery KW - hatching success KW - TSD Y1 - 2020 U6 - https://doi.org/10.1007/s11027-020-09932-3 SN - 1381-2386 SN - 1573-1596 VL - 25 IS - 8 SP - 1509 EP - 1521 PB - Springer CY - Dordrecht ER -