TY - JOUR A1 - Krebs, Simon K. A1 - Rakotoarinoro, Nathanael A1 - Stech, Marlitt A1 - Zemella, Anne A1 - Kubick, Stefan T1 - A CHO-based cell-free dual fluorescence reporter system for the straightforward assessment of amber suppression and scFv functionality JF - Frontiers in Bioengineering and Biotechnology N2 - Incorporation of noncanonical amino acids (ncAAs) with bioorthogonal reactive groups by amber suppression allows the generation of synthetic proteins with desired novel properties. Such modified molecules are in high demand for basic research and therapeutic applications such as cancer treatment and in vivo imaging. The positioning of the ncAA-responsive codon within the protein's coding sequence is critical in order to maintain protein function, achieve high yields of ncAA-containing protein, and allow effective conjugation. Cell-free ncAA incorporation is of particular interest due to the open nature of cell-free systems and their concurrent ease of manipulation. In this study, we report a straightforward workflow to inquire ncAA positions in regard to incorporation efficiency and protein functionality in a Chinese hamster ovary (CHO) cell-free system. As a model, the well-established orthogonal translation components Escherichia coli tyrosyl-tRNA synthetase (TyrRS) and tRNATyr(CUA) were used to site-specifically incorporate the ncAA p-azido-l-phenylalanine (AzF) in response to UAG codons. A total of seven ncAA sites within an anti-epidermal growth factor receptor (EGFR) single-chain variable fragment (scFv) N-terminally fused to the red fluorescent protein mRFP1 and C-terminally fused to the green fluorescent protein sfGFP were investigated for ncAA incorporation efficiency and impact on antigen binding. The characterized cell-free dual fluorescence reporter system allows screening for ncAA incorporation sites with high incorporation efficiency that maintain protein activity. It is parallelizable, scalable, and easy to operate. We propose that the established CHO-based cell-free dual fluorescence reporter system can be of particular interest for the development of antibody-drug conjugates (ADCs). KW - expanded genetic code KW - orthogonal system KW - noncanonical amino acid KW - unnatural amino acid KW - antibody KW - cell-free protein synthesis KW - mRFP1 KW - sfGFP Y1 - 2022 U6 - https://doi.org/10.3389/fbioe.2022.873906 SN - 2296-4185 VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Haueis, Lisa A1 - Stech, Marlitt A1 - Kubick, Stefan T1 - A Cell-free Expression Pipeline for the Generation and Functional Characterization of Nanobodies JF - Frontiers in Bioengineering and Biotechnology N2 - Cell-free systems are well-established platforms for the rapid synthesis, screening, engineering and modification of all kinds of recombinant proteins ranging from membrane proteins to soluble proteins, enzymes and even toxins. Also within the antibody field the cell-free technology has gained considerable attention with respect to the clinical research pipeline including antibody discovery and production. Besides the classical full-length monoclonal antibodies (mAbs), so-called "nanobodies" (Nbs) have come into focus. A Nb is the smallest naturally-derived functional antibody fragment known and represents the variable domain (VHH, similar to 15 kDa) of a camelid heavy-chain-only antibody (HCAb). Based on their nanoscale and their special structure, Nbs display striking advantages concerning their production, but also their characteristics as binders, such as high stability, diversity, improved tissue penetration and reaching of cavity-like epitopes. The classical way to produce Nbs depends on the use of living cells as production host. Though cell-based production is well-established, it is still time-consuming, laborious and hardly amenable for high-throughput applications. Here, we present for the first time to our knowledge the synthesis of functional Nbs in a standardized mammalian cell-free system based on Chinese hamster ovary (CHO) cell lysates. Cell-free reactions were shown to be time-efficient and easy-to-handle allowing for the "on demand" synthesis of Nbs. Taken together, we complement available methods and demonstrate a promising new system for Nb selection and validation. KW - cell-free protein synthesis KW - In vitro transcription KW - translation KW - nanobody KW - VHH KW - camelid KW - CHO cell lysate Y1 - 2022 U6 - https://doi.org/10.3389/fbioe.2022.896763 SN - 2296-4185 VL - 10 PB - Frontiers Media CY - Lausanne ER -