TY - CHAP A1 - Loßow, Kristina A1 - Schwarz, Maria A1 - Kopp, Johannes A1 - Schwerdtle, Tanja A1 - Kipp, Anna Patricia T1 - Age- and sex-dependent changes of trace elements and redox parameters in mice T2 - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research Y1 - 2021 U6 - https://doi.org/10.1016/j.freeradbiomed.2020.12.346 SN - 0891-5849 SN - 1873-4596 VL - 165 IS - Suppl. 1 SP - 34 PB - Elsevier CY - New York ER - TY - JOUR A1 - Michaelis, Vivien A1 - Aengenheister, Leonie A1 - Tuchtenhagen, Max A1 - Rinklebe, Jörg A1 - Ebert, Franziska A1 - Schwerdtle, Tanja A1 - Buerki-Thurnherr, Tina A1 - Bornhorst, Julia T1 - Differences and interactions in placental manganese and iron transfer across an in vitro model of human villous trophoblasts JF - International journal of molecular sciences N2 - Manganese (Mn) as well as iron (Fe) are essential trace elements (TE) important for the maintenance of physiological functions including fetal development. However, in the case of Mn, evidence suggests that excess levels of intrauterine Mn are associated with adverse pregnancy outcomes. Although Mn is known to cross the placenta, the fundamentals of Mn transfer kinetics and mechanisms are largely unknown. Moreover, exposure to combinations of TEs should be considered in mechanistic transfer studies, in particular for TEs expected to share similar transfer pathways. Here, we performed a mechanistic in vitro study on the placental transfer of Mn across a BeWo b30 trophoblast layer. Our data revealed distinct differences in the placental transfer of Mn and Fe. While placental permeability to Fe showed a clear inverse dose-dependency, Mn transfer was largely independent of the applied doses. Concurrent exposure of Mn and Fe revealed transfer interactions of Fe and Mn, indicating that they share common transfer mechanisms. In general, mRNA and protein expression of discussed transporters like DMT1, TfR, or FPN were only marginally altered in BeWo cells despite the different exposure scenarios highlighting that Mn transfer across the trophoblast layer likely involves a combination of active and passive transport processes. KW - manganese KW - iron KW - placental transfer KW - TE interactions KW - BeWo b30 KW - trophoblasts Y1 - 2022 U6 - https://doi.org/10.3390/ijms23063296 SN - 1422-0067 VL - 23 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ijomone, Omamuyovwi M. A1 - Iroegbu, Joy D. A1 - Morcillo, Patricia A1 - Ayodele, Akinyemi J. A1 - Ijomone, Olayemi K. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael T1 - Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure JF - Environmental toxicology N2 - Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions. KW - brain KW - female KW - male KW - manganese KW - oxidative stress Y1 - 2022 U6 - https://doi.org/10.1002/tox.23583 SN - 1520-4081 SN - 1522-7278 VL - 37 IS - 9 SP - 2167 EP - 2177 PB - Wiley CY - New York, NY ER - TY - JOUR A1 - Kuhn, Eugênia Carla A1 - Tavares Jacques, Maurício A1 - Teixeira, Daniela A1 - Meyer, Sören A1 - Gralha, Thiago A1 - Roehrs, Rafael A1 - Camargo, Sandro A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia A1 - Ávila, Daiana Silva T1 - Ecotoxicological assessment of Uruguay River and affluents pre- and biomonitoring JF - Environmental science and pollution research : ESPR N2 - Uruguay River is the most important river in western Rio Grande do Sul, separating Brazil from Argentina and Uruguay. However, its pollution is of great concern due to agricultural activities in the region and the extensive use of pesticides. In a long term, this practice leads to environmental pollution, especially to the aquatic system. The objective of this study was to analyze the physicochemical characteristics, metals and pesticides levels in water samples obtained before and after the planting and pesticides' application season from three sites: Uruguay River and two minor affluents, Mezomo Dam and Salso Stream. For biomonitoring, the free-living nematode Caenorhabditis elegans was used, which were exposed for 24 h. We did not find any significant alteration in physicochemical parameters. In the pre- and post-pesticides' samples we observed a residual presence of three pesticides (tebuconazole, imazethapyr, and clomazone) and metals which levels were above the recommended (As, Hg, Fe, and Mn). Exposure to both pre- and post-pesticides' samples impaired C. elegans reproduction and post-pesticides samples reduced worms' survival rate and lifespan. PCA analysis indicated that the presence of metals and pesticides are important variables that impacted C. elegans biological endpoints. Our data demonstrates that Uruguay River and two affluents are contaminated independent whether before or after pesticides' application season. In addition, it reinforces the usefulness of biological indicators, since simple physicochemical analyses are not sufficient to attest water quality and ecological safety. KW - Heavy metals KW - Pesticides KW - Contamination KW - Arsenic KW - Environmental KW - pollution KW - Uruguay River Y1 - 2021 U6 - https://doi.org/10.1007/s11356-020-11986-4 SN - 0944-1344 SN - 1614-7499 VL - 28 IS - 17 SP - 21730 EP - 21741 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Pan, Yuanwei A1 - Ma, Xuehua A1 - Liu, Chuang A1 - Xing, Jie A1 - Zhou, Suqiong A1 - Parshad, Badri A1 - Schwerdtle, Tanja A1 - Li, Wenzhong A1 - Wu, Aiguo A1 - Haag, Rainer T1 - Retinoic acid-loaded dendritic polyglycerol-conjugated gold nanostars for targeted photothermal therapy in breast cancer stem cells JF - ACS nano N2 - The existence of cancer stem cells (CSCs) poses a major obstacle for the success of current cancer therapies, especially the fact that non-CSCs can spontaneously turn into CSCs, which lead to the failure of the treatment and tumor relapse. Therefore, it is very important to develop effective strategies for the eradication of the CSCs. In this work, we have developed a CSCs-specific targeted, retinoic acid (RA)-loaded gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatform for the efficient eradication of CSCs. The nanocomposites possess good biocompatibility and exhibit effective CSCs-specific multivalent targeted capability due to hyaluronic acid (HA) decorated on the multiple attachment sites of the bioinert dendritic polyglycerol (dPG). With the help of CSCs differentiation induced by RA, the self-renewal of breast CSCs and tumor growth were suppressed by the high therapeutic efficacy of photothermal therapy (PTT) in a synergistic inhibitory manner. Moreover, the stemness gene expression and CSC-driven tumorsphere formation were significantly diminished. In addition, the in vivo tumor growth and CSCs were also effectively eliminated, which indicated superior anticancer activity, effective CSCs suppression, and prevention of relapse. Taken together, we developed a CSCs-specific targeted, RA-loaded GNSs-dPG nanoplatform for the targeted eradication of CSCs and for preventing the relapse. KW - cancer stem cells KW - dendritic polyglycerol KW - gold nanostars KW - retinoic acid KW - photothermal therapy Y1 - 2021 U6 - https://doi.org/10.1021/acsnano.1c05452 SN - 1936-0851 SN - 1936-086X VL - 15 IS - 9 SP - 15069 EP - 15084 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Michaelis, Vivien A1 - Aengenheister, Leonie A1 - Schwerdtle, Tanja A1 - Buerki-Thurnherr, Tina A1 - Bornhorst, Julia T1 - Manganese translocation across an in vitro model of human villous trophoblast T2 - Placenta Y1 - 2021 U6 - https://doi.org/10.1016/j.placenta.2021.07.205 SN - 0143-4004 SN - 1532-3102 VL - 112 SP - E63 EP - E64 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Varão Moura, Alexandre A1 - Aparecido Rosini Silva, Alex A1 - Domingos Santo da Silva, José A1 - Aleixo Leal Pedroza, Lucas A1 - Bornhorst, Julia A1 - Stiboller, Michael A1 - Schwerdtle, Tanja A1 - Gubert, Priscila T1 - Determination of ions in Caenorhabditis elegans by ion chromatography JF - Journal of chromatography. B N2 - The Caenorhabditis elegans (C. elegans) is a model organism that has been increasingly used in health and environmental toxicity assessments. The quantification of such elements in vivo can assist in studies that seek to relate the exposure concentration to possible biological effects. Therefore, this study is the first to propose a method of quantitative analysis of 21 ions by ion chromatography (IC), which can be applied in different toxicity studies in C. elegans. The developed method was validated for 12 anionic species (fluoride, acetate, chloride, nitrite, bromide, nitrate, sulfate, oxalate, molybdate, dichromate, phosphate, and perchlorate), and 9 cationic species (lithium, sodium, ammonium, thallium, potassium, magnesium, manganese, calcium, and barium). The method did not present the presence of interfering species, with R2 varying between 0.9991 and 0.9999, with a linear range from 1 to 100 mu g L-1. Limits of detection (LOD) and limits of quantification (LOQ) values ranged from 0.2319 mu g L-1 to 1.7160 mu g L-1 and 0.7028 mu g L-1 to 5.1999 mu g L-1, respectively. The intraday and interday precision tests showed an Relative Standard Deviation (RSD) below 10.0 % and recovery ranging from 71.0 % to 118.0 % with a maximum RSD of 5.5 %. The method was applied to real samples of C. elegans treated with 200 uM of thallium acetate solution, determining the uptake and bioaccumulated Tl+ content during acute exposure. KW - ion chromatography KW - C. elegans KW - method development KW - method validation KW - ion quantification Y1 - 2022 U6 - https://doi.org/10.1016/j.jchromb.2022.123312 SN - 1570-0232 SN - 1873-376X VL - 1204 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - GEN A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1364 KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514995 SN - 1866-8372 IS - 8 ER - TY - GEN A1 - Rausch, Ann-Kristin A1 - Brockmeyer, Robert A1 - Schwerdtle, Tanja T1 - Development, validation, and application of a multi-method for the determination of mycotoxins, plant growth regulators, tropane alkaloids, and pesticides in cereals by two-dimensional liquid chromatography tandem mass spectrometry T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Mycotoxins and pesticides regularly co-occur in agricultural products worldwide. Thus, humans can be exposed to both toxic contaminants and pesticides simultaneously, and multi-methods assessing the occurrence of various food contaminants and residues in a single method are necessary. A two-dimensional high performance liquid chromatography tandem mass spectrometry method for the analysis of 40 (modified) mycotoxins, two plant growth regulators, two tropane alkaloids, and 334 pesticides in cereals was developed. After an acetonitrile/water/formic acid (79:20:1, v/v/v) multi-analyte extraction procedure, extracts were injected into the two-dimensional setup, and an online clean-up was performed. The method was validated according to Commission Decision (EC) no. 657/2002 and document N° SANTE/12682/2019. Good linearity (R2 > 0.96), recovery data between 70-120%, repeatability and reproducibility values < 20%, and expanded measurement uncertainties < 50% were obtained for a wide range of analytes, including very polar substances like deoxynivalenol-3-glucoside and methamidophos. However, results for fumonisins, zearalenone-14,16-disulfate, acid-labile pesticides, and carbamates were unsatisfying. Limits of quantification meeting maximum (residue) limits were achieved for most analytes. Matrix effects varied highly (−85 to +1574%) and were mainly observed for analytes eluting in the first dimension and early-eluting analytes in the second dimension. The application of the method demonstrated the co-occurrence of different types of cereals with 28 toxins and pesticides. Overall, 86% of the samples showed positive findings with at least one mycotoxin, plant growth regulator, or pesticide. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1365 KW - 2D-LC-MS/MS KW - Multi-method KW - Mycotoxins KW - Modified mycotoxins KW - Pesticides KW - Cereals Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514795 SN - 1866-8372 IS - 143 ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Witt, Barbara A1 - Friese, Sharleen A1 - Michaelis, Vivien A1 - Hölz-Armstrong, Lisa A1 - Martin, Maximilian A1 - Ebert, Franziska A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells JF - Food and chemical toxicology N2 - Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes. KW - Manganese KW - Dopaminergic neurons KW - DNA integrity KW - DNA repair KW - Neurodegeneration KW - Oxidative stress KW - Genotoxicity Y1 - 2022 U6 - https://doi.org/10.1016/j.fct.2022.112822 SN - 0278-6915 SN - 1873-6351 VL - 161 PB - Elsevier CY - Oxford ER -