TY - THES A1 - Schmidt, Lena Katharina T1 - Altered hydrological and sediment dynamics in high-alpine areas – Exploring the potential of machine-learning for estimating past and future changes N2 - Climate change fundamentally transforms glaciated high-alpine regions, with well-known cryospheric and hydrological implications, such as accelerating glacier retreat, transiently increased runoff, longer snow-free periods and more frequent and intense summer rainstorms. These changes affect the availability and transport of sediments in high alpine areas by altering the interaction and intensity of different erosion processes and catchment properties. Gaining insight into the future alterations in suspended sediment transport by high alpine streams is crucial, given its wide-ranging implications, e.g. for flood damage potential, flood hazard in downstream river reaches, hydropower production, riverine ecology and water quality. However, the current understanding of how climate change will impact suspended sediment dynamics in these high alpine regions is limited. For one, this is due to the scarcity of measurement time series that are long enough to e.g. infer trends. On the other hand, it is difficult – if not impossible – to develop process-based models, due to the complexity and multitude of processes involved in high alpine sediment dynamics. Therefore, knowledge has so far been confined to conceptual models (which do not facilitate deriving concrete timings or magnitudes for individual catchments) or qualitative estimates (‘higher export in warmer years’) that may not be able to capture decreases in sediment export. Recently, machine-learning approaches have gained in popularity for modeling sediment dynamics, since their black box nature tailors them to the problem at hand, i.e. relatively well-understood input and output data, linked by very complex processes. Therefore, the overarching aim of this thesis is to estimate sediment export from the high alpine Ötztal valley in Tyrol, Austria, over decadal timescales in the past and future – i.e. timescales relevant to anthropogenic climate change. This is achieved by informing, extending, evaluating and applying a quantile regression forest (QRF) approach, i.e. a nonparametric, multivariate machine-learning technique based on random forest. The first study included in this thesis aimed to understand present sediment dynamics, i.e. in the period with available measurements (up to 15 years). To inform the modeling setup for the two subsequent studies, this study identified the most important predictors, areas within the catchments and time periods. To that end, water and sediment yields from three nested gauges in the upper Ötztal, Vent, Sölden and Tumpen (98 to almost 800 km² catchment area, 930 to 3772 m a.s.l.) were analyzed for their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. The findings suggest that the areas situated above 2500 m a.s.l., containing glacier tongues and recently deglaciated areas, play a pivotal role in sediment generation across all sub-catchments. In contrast, precipitation events were relatively unimportant (on average, 21 % of annual sediment yield was associated to precipitation events). Thus, the second and third study focused on the Vent catchment and its sub-catchment above gauge Vernagt (11.4 and 98 km², 1891 to 3772 m a.s.l.), due to their higher share of areas above 2500 m. Additionally, they included discharge, precipitation and air temperature (as well as their antecedent conditions) as predictors. The second study aimed to estimate sediment export since the 1960s/70s at gauges Vent and Vernagt. This was facilitated by the availability of long records of the predictors, discharge, precipitation and air temperature, and shorter records (four and 15 years) of turbidity-derived sediment concentrations at the two gauges. The third study aimed to estimate future sediment export until 2100, by applying the QRF models developed in the second study to pre-existing precipitation and temperature projections (EURO-CORDEX) and discharge projections (physically-based hydroclimatological and snow model AMUNDSEN) for the three representative concentration pathways RCP2.6, RCP4.5 and RCP8.5. The combined results of the second and third study show overall increasing sediment export in the past and decreasing export in the future. This suggests that peak sediment is underway or has already passed – unless precipitation changes unfold differently than represented in the projections or changes in the catchment erodibility prevail and override these trends. Despite the overall future decrease, very high sediment export is possible in response to precipitation events. This two-fold development has important implications for managing sediment, flood hazard and riverine ecology. This thesis shows that QRF can be a very useful tool to model sediment export in high-alpine areas. Several validations in the second study showed good performance of QRF and its superiority to traditional sediment rating curves – especially in periods that contained high sediment export events, which points to its ability to deal with threshold effects. A technical limitation of QRF is the inability to extrapolate beyond the range of values represented in the training data. We assessed the number and severity of such out-of-observation-range (OOOR) days in both studies, which showed that there were few OOOR days in the second study and that uncertainties associated with OOOR days were small before 2070 in the third study. As the pre-processed data and model code have been made publically available, future studies can easily test further approaches or apply QRF to further catchments. N2 - Der Klimawandel verändert vergletscherte Hochgebirgsregionen grundlegend, mit wohlbekannten Auswirkungen auf Kryosphäre und Hydrologie, wie beschleunigtem Gletscherrückgang, vorübergehend erhöhtem Abfluss, längeren schneefreien Perioden und häufigeren und intensiveren sommerlichen Starkniederschlägen. Diese Veränderungen wirken sich auf die Verfügbarkeit und den Transport von Sedimenten in hochalpinen Gebieten aus, indem sie die Interaktion und Intensität verschiedener Erosionsprozesse und Einzugsgebietseigenschaften verändern. Eine Abschätzung der zukünftigen Veränderungen des Schwebstofftransports in hochalpinen Bächen ist von entscheidender Bedeutung, da sie weitreichende Auswirkungen haben, z. B. auf das Hochwasserschadenspotenzial, die Hochwassergefahr in den Unterläufen, sowie Wasserkraftproduktion, aquatische Ökosysteme und Wasserqualität. Das derzeitige Verständnis der Auswirkungen des Klimawandels auf die Schwebstoffdynamik in diesen hochalpinen Regionen ist jedoch begrenzt. Dies liegt zum einen daran, dass es kaum ausreichend lange Messzeitreihen gibt, um z.B. Trends ableiten zu können. Zum anderen ist es aufgrund der Komplexität und der Vielzahl der Prozesse, die an der hochalpinen Sedimentdynamik beteiligt sind, schwierig - wenn nicht gar unmöglich - prozessbasierte Modelle zu entwickeln. Daher beschränkte sich das Wissen bisher auf konzeptionelle Modelle (die es nicht ermöglichen, konkrete Zeitpunkte oder Größenordnungen für einzelne Einzugsgebiete abzuleiten) oder qualitative Schätzungen ("höherer Sedimentaustrag in wärmeren Jahren"), die möglicherweise nicht in der Lage sind, Rückgänge im Sedimentaustrag abzubilden. In jüngster Zeit haben Ansätze des maschinellen Lernens für die Modellierung der Sedimentdynamik an Popularität gewonnen, da sie aufgrund ihres Black-Box-Charakters auf das vorliegende Problem zugeschnitten sind, d. h. auf relativ gut verstandene Eingangs- und Ausgangsdaten, die durch sehr komplexe Prozesse verknüpft sind. Das übergeordnete Ziel dieser Arbeit ist daher die Abschätzung des Sedimentaustrags am Beispiel des hochalpinen Ötztals in Tirol, Österreich, auf dekadischen Zeitskalen in der Vergangenheit und Zukunft – also Zeitskalen, die für den anthropogenen Klimawandel relevant sind. Dazu wird ein Quantile Regression Forest (QRF)-Ansatz, d.h. ein nichtparametrisches, multivariates maschinelles Lernverfahren auf der Basis von Random Forest, erweitert, evaluiert und angewendet. Die erste Studie im Rahmen dieser Arbeit zielte darauf ab, die "gegenwärtige" Sedimentdynamik zu verstehen, d. h. in dem Zeitraum, für den Messungen vorliegen (bis zu 15 Jahre). Um die Modellierung für die beiden folgenden Studien zu ermöglichen, wurden in dieser Studie die wichtigsten Prädiktoren, Teilgebiete des Untersuchungsgebiets und Zeiträume ermittelt. Zu diesem Zweck wurden die Wasser- und Sedimenterträge von drei verschachtelten Pegeln im oberen Ötztal, Vent, Sölden und Tumpen (98 bis fast 800 km² Einzugsgebiet, 930 bis 3772 m ü.d.M.), auf ihre räumliche Verteilung, ihre Saisonalität und deren räumlichen Unterschiede, sowie die relative Bedeutung von Niederschlagsereignissen hin untersucht. Die Ergebnisse deuten darauf hin, dass die Gebiete oberhalb von 2500 m ü. M., in denen sich Gletscherzungen und kürzlich entgletscherte Gebiete befinden, eine zentrale Rolle in der Sedimentdynamik in allen Teileinzugsgebieten spielen. Im Gegensatz dazu waren Niederschlagsereignisse relativ unbedeutend (im Durchschnitt wurden 21 % des jährlichen Austrags mit Niederschlagsereignissen in Verbindung gebracht). Daher konzentrierten sich die zweite und dritte Studie auf das Vent-Einzugsgebiet und sein Teileinzugsgebiet oberhalb des Pegels Vernagt (11,4 und 98 km², 1891 bis 3772 m ü. M.), da sie einen höheren Anteil an Gebieten oberhalb von 2500 m aufweisen. Außerdem wurden Abfluss, Niederschlag und Lufttemperatur (sowie deren Vorbedingungen) als Prädiktoren einbezogen. Die zweite Studie zielte darauf ab, den Sedimentexport seit den 1960er/70er Jahren an den Pegeln Vent und Vernagt abzuschätzen. Dies wurde durch die Verfügbarkeit langer Aufzeichnungen der Prädiktoren Abfluss, Niederschlag und Lufttemperatur sowie kürzerer Aufzeichnungen (vier und 15 Jahre) von aus Trübungsmessungen abgeleiteten Sedimentkonzentrationen an den beiden Pegeln ermöglicht. Die dritte Studie zielte darauf ab, den zukünftigen Sedimentexport bis zum Jahr 2100 abzuschätzen, indem die in der zweiten Studie entwickelten QRF-Modelle auf bereits existierende Niederschlags- und Temperaturprojektionen (EURO-CORDEX) und Abflussprojektionen (des physikalisch basierten hydroklimatologischen und Schneemodells AMUNDSEN) in den drei repräsentativen Konzentrationspfaden RCP2.6, RCP4.5 und RCP8.5 angewendet wurden. Die kombinierten Ergebnisse der zweiten und dritten Studie legen nahe, dass der Sedimentexport in der Vergangenheit insgesamt zugenommen hat und in der Zukunft abnehmen wird. Dies deutet darauf hin, dass der Höhepunkt des Sedimenteintrags erreicht ist oder bereits überschritten wurde - es sei denn, die Niederschlagsveränderungen entwickeln sich anders, als es in den Projektionen dargestellt ist, oder Veränderungen in der Erodierbarkeit des Einzugsgebiets setzen sich durch. Trotz des allgemeinen Rückgangs in der Zukunft sind sehr hohe Sedimentausträge als Reaktion auf Niederschlagsereignisse möglich. Diese zweifältige Entwicklung hat wichtige Auswirkungen auf das Sedimentmanagement, die Hochwassergefahr und die Flussökologie. Diese Arbeit zeigt, dass QRF ein sehr nützliches Instrument zur Modellierung des Sedimentexports in hochalpinen Gebieten sein kann. Mehrere Validierungen in der zweiten Studie zeigten eine gute Modell-Performance und die Überlegenheit gegenüber traditionellen Sediment-Abfluss-Beziehungen – insbesondere in Zeiträumen, in denen es zu einem hohen Sedimentexport kam, was auf die Fähigkeit von QRF hinweist, mit Schwelleneffekten umzugehen. Eine technische Einschränkung von QRF ist die Unfähigkeit, über den Bereich der in den Trainingsdaten dargestellten Werte hinaus zu extrapolieren. Die Anzahl und den Schweregrad an solchen Tagen, in denen der Wertebereich der Trainingsdaten überschritten wurde, wurde in beiden Studien untersucht. Dabei zeigte sich, dass es in der zweiten Studie nur wenige solcher Tage gab und dass die mit den Überschreitungen verbundenen Unsicherheiten in der dritten Studie vor 2070 gering waren. Da die vorverarbeiteten Daten und der Modellcode öffentlich zugänglich gemacht wurden, können künftige Studien darauf aufbauend weitere Ansätze testen oder QRF auf weitere Einzugsgebiete anwenden. KW - suspended sediment KW - glacier melt KW - climate change KW - natural hazards KW - hydrology KW - geomorphology KW - Klimawandel KW - Geomorphologie KW - Gletscherschmelze KW - Hydrologie KW - Naturgefahren KW - suspendiertes Sediment Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-623302 ER - TY - GEN A1 - Schmidt, Lena Katharina A1 - Francke, Till A1 - Rottler, Erwin A1 - Blume, Theresa A1 - Schöber, Johannes T1 - Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper Ötztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006–2020). The catchments of the gauges in Vent, Sölden and Tumpen range from 100 to almost 800 km2 with 10 % to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 % of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1296 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576564 SN - 1866-8372 IS - 1296 SP - 653 EP - 669 ER - TY - JOUR A1 - Schmidt, Lena Katharina A1 - Francke, Till A1 - Rottler, Erwin A1 - Blume, Theresa A1 - Schöber, Johannes A1 - Bronstert, Axel T1 - Suspended sediment and discharge dynamics in a glaciated alpine environment BT - identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria JF - Earth surface dynamics N2 - Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper Ötztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006–2020). The catchments of the gauges in Vent, Sölden and Tumpen range from 100 to almost 800 km2 with 10 % to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 % of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics. Y1 - 2022 U6 - https://doi.org/10.5194/esurf-10-653-2022 SN - 2196-632X SN - 2196-6311 VL - 10 IS - 3 SP - 653 EP - 669 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Schmidt, Lena Katharina A1 - Bochow, Mathias A1 - Imhof, Hannes K. A1 - Oswald, Sascha Eric T1 - Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy BT - Study of an urban watercourse traversing the city of Berlin, Germany JF - Environmental pollution N2 - Following the widespread assumption that a majority of ubiquitous marine microplastic particles originate from land-based sources, recent studies identify rivers as important pathways for microplastic particles (MPP) to the oceans. Yet a detailed understanding of the underlying processes and dominant sources is difficult to obtain with the existing accurate but extremely time-consuming methods available for the identification of MPP. Thus in the presented study, a novel approach applying short-wave infrared imaging spectroscopy for the quick and semi-automated identification of MPP is applied in combination with a multitemporal survey concept. Volume-reduced surface water samples were taken from transects at ten points along a major watercourse running through the South of Berlin, Germany, on six dates. After laboratory treatment, the samples were filtered onto glass fiber filters, scanned with an imaging spectrometer and analyzed by image processing. The presented method allows to count MPP, classify the plastic types and determine particle sizes. At the present stage of development particles larger than 450 m in diameter can be identified and a visual validation showed that the results are reliable after a subsequent visual final check of certain typical error types. Therefore, the method has the potential to accelerate microplastic identification by complementing FTIR and Raman microspectroscopy. Technical advancements (e.g. new lens) will allow lower detection limits and a higher grade of automatization in the near future. The resulting microplastic concentrations in the water samples are discussed in a spatio-temporal context with respect to the influence (i) of urban areas, (ii) of effluents of three major Berlin wastewater treatment plants discharging into the canal and (iii) of precipitation events. Microplastic concentrations were higher downstream of the urban area and after precipitation. An increase in microplastic concentrations was discernible for the wastewater treatment plant located furthest upstream though not for the other two. (C) 2018 Elsevier Ltd. All rights reserved. Y1 - 2018 U6 - https://doi.org/10.1016/j.envpol.2018.03.097 SN - 0269-7491 SN - 1873-6424 VL - 239 SP - 579 EP - 589 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Schmidt, Lena Katharina A1 - Zimmermann, Alexander A1 - Elsenbeer, Helmut T1 - Ant mounds as a source of sediment in a tropical rainforest? JF - Hydrological processes N2 - In Lutzito catchment on Barro Colorado Island, Panama, extraordinarily high suspended-sediment yields of 1-2Mgha-1year-1 were generated despite the dense forest cover coinciding with erosion-resistant soils. We hypothesized that ant mounding activity is an important zoogeomorphological mechanism in this area, providing relevant quantities of easily transportable material at the soil surface. To test this hypothesis, all ant mound material was collected collected for dry mass determination from thirty 4m2 plots installed in the study area every 1-3days during the 39-day sampling period. Additionally, three ground-nesting ant species responsible for mounds in the study area, Ectatomma ruidum, Trachymyrmex cornetzi and Strumigenys marginiventris, were identified. On the basis of the total of 1.38kg of material collected in the wet season of 2011, the estimate for the whole 8months wet season amounts to 725kgha-1. As this value is in the same order of magnitude as sediment output, it shows that ants may act as important ecosystem engineers and contribute to sediment production here by providing large quantities of fine-grained, readily erodible material at the soil surface for subsequent transport to the streambed. Copyright (c) 2014 John Wiley & Sons, Ltd. KW - ant mounds KW - soil erosion KW - sediment output KW - zoogeomorphology Y1 - 2014 U6 - https://doi.org/10.1002/hyp.10222 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 13 SP - 4156 EP - 4160 PB - Wiley-Blackwell CY - Hoboken ER -