TY - JOUR A1 - Baumgartner, Jens A1 - Lesevic, Paul A1 - Kumari, Monika A1 - Halbmair, Karin A1 - Bennet, Mathieu A1 - Koernig, Andre A1 - Widdrat, Marc A1 - Andert, Janet A1 - Wollgarten, Markus A1 - Bertinetti, Luca A1 - Strauch, Peter A1 - Hirt, Ann A1 - Faivre, Damien T1 - From magnetotactic bacteria to hollow spirilla-shaped silica containing a magnetic chain JF - RSC Advances N2 - Magnetotactic bacteria produce chains of magnetite nanoparticles, which are called magnetosomes and are used for navigational purposes. We use these cells as a biological template to prepare a hollow hybrid material based on silica and magnetite, and show that the synthetic route is nondestructive as the material conserves the cell morphology as well as the alignment of the magnetic particles. The hybrid material can be resuspended in aqueous solution, and can be shown to orient itself in an external magnetic field. We anticipate that chemical modification of the silica can be used to functionalize the material surface in order to obtain multifunctional materials with specialized applications, e.g. targeted drug delivery. Y1 - 2012 U6 - https://doi.org/10.1039/c2ra20911j SN - 2046-2069 VL - 2 IS - 21 SP - 8007 EP - 8009 PB - Royal Society of Chemistry CY - Cambridge ER -