TY - BOOK A1 - Nienhaus, Marc A1 - Gooch, Bruce A1 - Döllner, Jürgen Roland Friedrich T1 - Visualizing movement dynamics in virtual urban environments N2 - Dynamics in urban environments encompasses complex processes and phenomena such as related to movement (e.g.,traffic, people) and development (e.g., construction, settlement). This paper presents novel methods for creating human-centric illustrative maps for visualizing the movement dynamics in virtual 3D environments. The methods allow a viewer to gain rapid insight into traffic density and flow. The illustrative maps represent vehicle behavior as light threads. Light threads are a familiar visual metaphor caused by moving light sources producing streaks in a long-exposure photograph. A vehicle’s front and rear lights produce light threads that convey its direction of motion as well as its velocity and acceleration. The accumulation of light threads allows a viewer to quickly perceive traffic flow and density. The light-thread technique is a key element to effective visualization systems for analytic reasoning, exploration, and monitoring of geospatial processes. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 17 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-33065 SN - 978-3-939469-52-0 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Döllner, Jürgen Roland Friedrich A1 - Kirsch, Florian A1 - Nienhaus, Marc T1 - Visualizing Design and Spatial Assembly of Interactive CSG N2 - For interactive construction of CSG models understanding the layout of a model is essential for its efficient manipulation. To understand position and orientation of aggregated components of a CSG model, we need to realize its visible and occluded parts as a whole. Hence, transparency and enhanced outlines are key techniques to assist comprehension. We present a novel real-time rendering technique for visualizing design and spatial assembly of CSG models. As enabling technology we combine an image-space CSG rendering algorithm with blueprint rendering. Blueprint rendering applies depth peeling for extracting layers of ordered depth from polygonal models and then composes them in sorted order facilitating a clear insight of the models. We develop a solution for implementing depth peeling for CSG models considering their depth complexity. Capturing surface colors of each layer and later combining the results allows for generating order-independent transparency as one major rendering technique for CSG models. We further define visually important edges for CSG models and integrate an image-space edgeenhancement technique for detecting them in each layer. In this way, we extract visually important edges that are directly and not directly visible to outline a model’s layout. Combining edges with transparency rendering, finally, generates edge-enhanced depictions of image-based CSG models and allows us to realize their complex, spatial assembly. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 07 Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-33771 SN - 978-3-937786-56-2 PB - Universitätsverlag Potsdam CY - Potsdam ER -