TY - GEN A1 - Troppmann, Britta A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor N2 - Background and purpose: 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT1 receptor of an insect model for neurobiology, physiology and pharmacology. Experimental approach: A cDNA encoding for the Periplaneta americana 5-HT1 receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. Key results: The P. americana 5-HT1 receptor (Pea5-HT1) shares pronounced sequence and functional similarity with mammalian 5-HT1 receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT1 was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. Conclusions and implications: This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT1 receptor. The results presented here should facilitate further analyses of 5-HT1 receptors in mediating central and peripheral effects of 5-HT in insects. KW - Biogenic amine KW - constitutive activity KW - cellular signalling KW - G-protein-coupled receptor KW - insect Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44346 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Rotte, Cathleen A1 - Krach, Christian A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Walz, Bernd T1 - Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana) N2 - The phenolamines octopamine and tyramine control, regulate, and modulate many physiological and behavioral processes in invertebrates. Vertebrates possess only small amounts of both substances, and thus, octopamine and tyramine, together with other biogenic amines, are referred to as “trace amines.” Biogenic amines evoke cellular responses by activating G-protein-coupled receptors. We have isolated a complementary DNA (cDNA) that encodes a biogenic amine receptor from the American cockroach Periplaneta americana, viz., Peatyr1, which shares high sequence similarity to members of the invertebrate tyramine-receptor family. The PeaTYR1 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with tyramine reduces adenylyl cyclase activity in a dose-dependent manner (EC50 350 nM). The inhibitory effect of tyramine is abolished by co-incubation with either yohimbine or chlorpromazine. Receptor expression has been investigated by reverse transcription polymerase chain reaction and immunocytochemistry. The mRNA is present in various tissues including brain, salivary glands, midgut, Malpighian tubules, and leg muscles. The effect of tyramine on salivary gland acinar cells has been investigated by intracellular recordings, which have revealed excitatory presynaptic actions of tyramine. This study marks the first comprehensive molecular, pharmacological, and functional characterization of a tyramine receptor in the cockroach. KW - Biogenic amine KW - cellular signaling KW - G-protein-coupled receptor KW - octopamine KW - salivary gland Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44335 ER - TY - GEN A1 - Voss, Martin A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C N2 - The activity of vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT). 5-HT induces, via protein kinase A, the phosphorylation of V-ATPase subunit C and the assembly of V-ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V-ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK-506) do not prevent V-ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA-AM leads to the activation of proton pumping in the absence of 5-HT, prolongs the 5-HT-induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V-ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc. KW - vacuolar H+-ATPase KW - assembly KW - regulation KW - protein phosphatise KW - dephosphorylation Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44360 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Rotte, Cathleen A1 - Witte, Jeannine A1 - Baumann, Otto A1 - Walz, Bernd T1 - Source, topography and excitatory effects of GABAergic innervation in cockroach salivary glands N2 - Cockroach salivary glands are innervated by dopaminergic and serotonergic neurons. Both transmitters elicit saliva secretion. We studied the distribution pattern of neurons containing gamma-aminobutyric acid ( GABA) and their physiological role. Immunofluorescence revealed a GABA-immunoreactive axon that originates within the subesophageal ganglion at the salivary neuron 2 (SN2) and this extends within the salivary duct nerve towards the salivary gland. GABA-positive fibers form a network on most acinar lobules and a dense plexus in the interior of a minor fraction of acinar lobules. Co-staining with anti-synapsin revealed that some putative GABAergic terminals seem to make pre-synaptic contacts with GABA-negative release sites. Many putative GABAergic release sites are at some distance from other synapses and at distance from the acinar tissue. Intracellular recordings from isolated salivary glands have revealed that GABA does not affect the basolateral membrane potential of the acinar cells directly. When applied during salivary duct nerve stimulation, GABA enhances the electrical response of the acinar cells and increases the rates of fluid and protein secretion. The effect on electrical cell responses is mimicked by the GABA(B) receptor agonists baclofen and SKF97541, and blocked by the GABAB receptor antagonists CGP52432 and CGP54626. These findings indicate that GABA has a modulatory role in the control of salivation, acting presynaptically on serotonergic and/or dopaminergic neurotransmission. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 111 KW - GABA KW - salivary gland KW - innervation KW - cockroach KW - Periplaneta americana Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44353 ER - TY - GEN A1 - Rein, Julia A1 - Voss, Martin A1 - Blenau, Wolfgang A1 - Walz, Bernd A1 - Baumann, Otto T1 - Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein kinase A N2 - The vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary gland cells energizes the secretion of a KCl-rich saliva in response to the neurohormone serotonin (5-HT). We have shown previously that exposure to 5-HT induces a cAMP-mediated reversible assembly of V-0 and V-1 subcomplexes to V-ATPase holoenzymes and increases V-ATPase-driven proton transport. Here, we analyze whether the effect of cAMP on V-ATPase is mediated by protein kinase A (PKA) or exchange protein directly activated by cAMP (Epac), the cAMP target proteins that are present within the salivary glands. Immunofluorescence microscopy shows that PKA activators, but not Epac activators, induce the translocation of V1 components from the cytoplasm to the apical membrane, indicative of an assembly of V-ATPase holoenzymes. Measurements of transepithelial voltage changes and microfluorometric pH measurements at the luminal surface of cells in isolated glands demonstrate further that PKA-activating cAMP analogs increase cation transport to the gland lumen and induce a V-ATPase-dependent luminal acidification, whereas activators of Epac do not. Inhibitors of PKA block the 5-HT-induced V-1 translocation to the apical membrane and the increase in proton transport. We conclude that cAMP exerts its effects on V-ATPase via PKA. KW - Vacuolar h+-atpase KW - camp binding-sites KW - cyclic-amp KW - plasma-membrane KW - drosophila-melanogaster Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-46126 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Troppmann, Britta A1 - Walz, Bernd T1 - Pharmacology of serotonin-induced salivary secretion in Periplaneta americana N2 - The acinar salivary gland of the cockroach, Periplaneta americana, is innervated by dopaminergic and serotonergic nerve fibers. Stimulation of the glands by serotonin (5-hydroxytryptamine, 5-HT) results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, dopamine acts selectively on ion-transporting peripheral cells within the acini, and 5-HT acts on protein-producing central cells. We have investigated the pharmacology of the 5-HT-induced secretory activity of isolated salivary glands of P. americana by testing several 5-HT receptor agonists and antagonists. The effects of 5-HT can be mimicked by the non-selective 5-HT receptor agonist 5-methoxytryptamine. All tested agonists that display at least some receptor subtype specificity in mammals, i.e., 5-carboxamidotryptamine, (+/-)-8-OH-DPAT, (+/-)-DOI, and AS 19, were ineffective in stimulating salivary secretion. 5-HT-induced secretion can be blocked by the vertebrate 5-HT receptor antagonists methiothepin, cyproheptadine, and mianserin. Our pharmacological data indicate that the pharmacology of arthropod 5-HT receptors is remarkably different from that of their vertebrate counterparts. (C) 2007 Elsevier Ltd. All rights reserved. KW - Biogenic amine KW - G protein-coupled receptor KW - insect KW - salivary gland KW - secretion Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44319 ER - TY - THES A1 - Blenau, Wolfgang T1 - Aminerge Signaltransduktion bei Insekten T1 - Aminergic signal transduction in insects N2 - Biogene Amine sind kleine organische Verbindungen, die sowohl bei Wirbeltieren als auch bei Wirbellosen als Neurotransmitter, Neuromodulatoren und/oder Neurohormone wirken können. Sie bilden eine bedeutende Gruppe von Botenstoffen und entfalten ihre Wirkungen über die Bindung an eine bestimmte Klasse von Rezeptorproteinen, die als G-Protein-gekoppelte Rezeptoren bezeichnet werden. Bei Insekten gehören zur Substanzklasse der biogenen Amine die Botenstoffe Dopamin, Tyramin, Octopamin, Serotonin und Histamin. Neben vielen anderen Wirkung ist z.B. gezeigt worden, daß einige dieser biogenen Amine bei der Honigbiene (Apis mellifera) die Geschmacksempfindlichkeit für Zuckerwasser-Reize modulieren können. Ich habe verschiedene Aspekte der aminergen Signaltransduktion an den „Modellorganismen“ Honigbiene und Amerikanische Großschabe (Periplaneta americana) untersucht. Aus der Honigbiene, einem „Modellorganismus“ für das Studium von Lern- und Gedächtnisvorgängen, wurden zwei Dopamin-Rezeptoren, ein Tyramin-Rezeptor, ein Octopamin-Rezeptor und ein Serotonin-Rezeptor charakterisiert. Die Rezeptoren wurden in kultivierten Säugerzellen exprimiert, um ihre pharmakologischen und funktionellen Eigenschaften (Kopplung an intrazelluläre Botenstoffwege) zu analysieren. Weiterhin wurde mit Hilfe verschiedener Techniken (RT-PCR, Northern-Blotting, in situ-Hybridisierung) untersucht, wo und wann während der Entwicklung die entsprechenden Rezeptor-mRNAs im Gehirn der Honigbiene exprimiert werden. Als Modellobjekt zur Untersuchung der zellulären Wirkungen biogener Amine wurden die Speicheldrüsen der Amerikanischen Großschabe genutzt. An isolierten Speicheldrüsen läßt sich sowohl mit Dopamin als auch mit Serotonin Speichelproduktion auslösen, wobei Speichelarten unterschiedlicher Zusammensetzung gebildet werden. Dopamin induziert die Bildung eines völlig proteinfreien, wäßrigen Speichels. Serotonin bewirkt die Sekretion eines proteinhaltigen Speichels. Die Serotonin-induzierte Proteinsekretion wird durch eine Erhöhung der Konzentration des intrazellulären Botenstoffs cAMP vermittelt. Es wurden die pharmakologischen Eigenschaften der Dopamin-Rezeptoren der Schaben-Speicheldrüsen untersucht sowie mit der molekularen Charakterisierung putativer aminerger Rezeptoren der Schabe begonnen. Weiterhin habe ich das ebony-Gen der Schabe charakterisiert. Dieses Gen kodiert für ein Enzym, das wahrscheinlich bei der Schabe (wie bei anderen Insekten) an der Inaktivierung biogener Amine beteiligt ist und im Gehirn und in den Speicheldrüsen der Schabe exprimiert wird. N2 - Biogenic amines are small organic compounds that act as neurotransmitters, neuromodulators and/or neurohormones in vertebrates and in invertebrates. They form an important group of messenger substances and mediate their diverse effects by binding to membrane receptors that primarily belong to the large gene-family of G protein-coupled receptors. In insects, the group of biogenic amine messengers consists of five members: dopamine, tyramine, octopamine, serotonin, and histamine. Besides many other effects, some of these biogenic amines were shown, for example, to modulate gustatory sensitivity to sucrose stimuli in the honeybee (Apis mellifera). I have investigated various aspects of the aminergic signal transduction in the “model organisms” honeybee and American cockroach (Periplaneta americana). So far, I have characterized two dopamine receptors, a tyramine receptor, an octopamine receptor and a serotonin receptor of the honeybee, which is well-known for its learning and memory capacities. The receptors where expressed in cultivated mammalian cells in order to analyze their pharmacological and functional (i.e., second messenger coupling) properties. The spatiotemporal expression patterns of the respective receptor mRNA were investigated in the honeybee brain by using different techniques (RT PCR, Northern blotting, in situ-hybridization). The salivary glands of the American cockroach were used as a model object in order to investigate the cellular effects of biogenic amines. Both dopamine and serotonin trigger salivary secretion in isolated salivary glands. The quality of the secreted saliva is, however, different. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Serotonin-induced protein secretion is mediated by an increase in the intracellular concentration of cAMP. The pharmacological properties of dopamine receptors associated with cockroach salivary glands were investigated and the molecular characterization of putative aminergic receptors of the cockroach was initiated. Furthermore, I have characterized the ebony gene of the cockroach. This gene encodes an enzyme that is probably involved in the inactivation of biogenic amines in the cockroach (as in other insects). The ebony gene is expressed in the brain and in the salivary glands of the cockroach. KW - Neurotransmitter-Rezeptor KW - Dopamin KW - Tyramin KW - Octopamin KW - Serotonin KW - Insekten KW - Biene KW - Amerikanische Schabe KW - Biogene Amine KW - G-Protein-gekoppelte-Rezeptoren KW - biogenic amines KW - G protein-coupled receptors KW - honeybee KW - salivary gland Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7568 ER - TY - GEN A1 - Scheiner, Ricarda A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Aminergic control and modulation of honeybee behaviour N2 - Biogenic amines are important messenger substances in the central nervous system and in peripheral organs of vertebrates and of invertebrates. The honeybee, Apis mellifera, is excellently suited to uncover the functions of biogenic amines in behaviour, because it has an extensive behavioural repertoire, with a number of biogenic amine receptors characterised in this insect. In the honeybee, the biogenic amines dopamine, octopamine, serotonin and tyramine modulate neuronal functions in various ways. Dopamine and serotonin are present in high concentrations in the bee brain, whereas octopamine and tyramine are less abundant. Octopamine is a key molecule for the control of honeybee behaviour. It generally has an arousing effect and leads to higher sensitivity for sensory inputs, better learning performance and increased foraging behaviour. Tyramine has been suggested to act antagonistically to octopamine, but only few experimental data are available for this amine. Dopamine and serotonin often have antagonistic or inhibitory effects as compared to octopamine. Biogenic amines bind to membrane receptors that primarily belong to the large gene-family of GTP-binding (G) protein coupled receptors. Receptor activation leads to transient changes in concentrations of intracellular second messengers such as cAMP, IP3 and/or Ca2+. Although several biogenic amine receptors from the honeybee have been cloned and characterised more recently, many genes still remain to be identified. The availability of the completely sequenced genome of Apis mellifera will contribute substantially to closing this gap. In this review, we will discuss the present knowledge on how biogenic amines and their receptor-mediated cellular responses modulate different behaviours of honeybees including learning processes and division of labour. KW - Serotonin KW - dopamine KW - octopamine KW - tyramine KW - honeybee Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-46106 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Hauser, Frank A1 - Cazzamali, Giuseppe A1 - Williamson, Michael A1 - Grimmelikhuijzen, Cornelis J. P. T1 - A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera N2 - G protein-coupled receptor (GPCR) genes are large gene families in every animal, sometimes making up to 1-2% of the animal's genome. Of all insect GPCRs, the neurohormone (neuropeptide, protein hormone, biogenic amine) GPCRs are especially important, because they, together with their ligands, occupy a high hierarchic position in the physiology of insects and steer crucial processes such as development, reproduction, and behavior. In this paper, we give a review of our current knowledge on Drosophila melanogaster GPCRs and use this information to annotate the neurohormone GPCR genes present in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21 in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some interesting observations on neurohormone GPCR evolution and the evolution and co-evolution of their ligands. For neuropeptide and protein hormone GPCRs, there appears to be a general co-evolution between receptors and their ligands. This is in contrast to biogenic amine GPCRs, where evolutionarily unrelated GPCRs often bind to the same biogenic amine, suggesting frequent ligand exchanges ("ligand hops") during GPCR evolution. (c) 2006 Elsevier Ltd. All rights reserved. KW - GPCR KW - neuropeptide KW - neurohormone KW - hormone KW - biogenic amine Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44326 ER - TY - GEN A1 - Schlenstedt, Jana A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Am5-HT7 : molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera) N2 - The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT7 receptor family. Expression of the Am5-HT7 receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT7 is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC50 = 1.1-1.8 nM). The Am5-HT7 receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT. KW - Behaviour KW - biogenic amine KW - cellular signalling KW - constitutive activity KW - cyclic AMP Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44423 ER -