TY - JOUR A1 - Engbert, Ralf A1 - Rabe, Maximilian Michael A1 - Kliegl, Reinhold A1 - Reich, Sebastian T1 - Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics JF - Bulletin of mathematical biology : official journal of the Society for Mathematical Biology N2 - Newly emerging pandemics like COVID-19 call for predictive models to implement precisely tuned responses to limit their deep impact on society. Standard epidemic models provide a theoretically well-founded dynamical description of disease incidence. For COVID-19 with infectiousness peaking before and at symptom onset, the SEIR model explains the hidden build-up of exposed individuals which creates challenges for containment strategies. However, spatial heterogeneity raises questions about the adequacy of modeling epidemic outbreaks on the level of a whole country. Here, we show that by applying sequential data assimilation to the stochastic SEIR epidemic model, we can capture the dynamic behavior of outbreaks on a regional level. Regional modeling, with relatively low numbers of infected and demographic noise, accounts for both spatial heterogeneity and stochasticity. Based on adapted models, short-term predictions can be achieved. Thus, with the help of these sequential data assimilation methods, more realistic epidemic models are within reach. KW - Stochastic epidemic model KW - Sequential data assimilation KW - Ensemble Kalman KW - filter KW - COVID-19 Y1 - 2020 U6 - https://doi.org/10.1007/s11538-020-00834-8 SN - 0092-8240 SN - 1522-9602 VL - 83 IS - 1 PB - Springer CY - New York ER - TY - GEN A1 - Wiljes, Jana de A1 - Tong, Xin T. T1 - Analysis of a localised nonlinear ensemble Kalman Bucy filter with complete and accurate observations T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Concurrent observation technologies have made high-precision real-time data available in large quantities. Data assimilation (DA) is concerned with how to combine this data with physical models to produce accurate predictions. For spatial-temporal models, the ensemble Kalman filter with proper localisation techniques is considered to be a state-of-the-art DA methodology. This article proposes and investigates a localised ensemble Kalman Bucy filter for nonlinear models with short-range interactions. We derive dimension-independent and component-wise error bounds and show the long time path-wise error only has logarithmic dependence on the time range. The theoretical results are verified through some simple numerical tests. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1221 KW - data assimilation KW - stability and accuracy KW - dimension independent bound KW - localisation KW - high dimensional KW - filter KW - nonlinear Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-540417 SN - 1866-8372 VL - 33 IS - 9 SP - 4752 EP - 4782 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Wiljes, Jana de A1 - Tong, Xin T. T1 - Analysis of a localised nonlinear ensemble Kalman Bucy filter with complete and accurate observations JF - Nonlinearity N2 - Concurrent observation technologies have made high-precision real-time data available in large quantities. Data assimilation (DA) is concerned with how to combine this data with physical models to produce accurate predictions. For spatial-temporal models, the ensemble Kalman filter with proper localisation techniques is considered to be a state-of-the-art DA methodology. This article proposes and investigates a localised ensemble Kalman Bucy filter for nonlinear models with short-range interactions. We derive dimension-independent and component-wise error bounds and show the long time path-wise error only has logarithmic dependence on the time range. The theoretical results are verified through some simple numerical tests. KW - data assimilation KW - stability and accuracy KW - dimension independent bound KW - localisation KW - high dimensional KW - filter KW - nonlinear Y1 - 2020 U6 - https://doi.org/10.1088/1361-6544/ab8d14 SN - 0951-7715 SN - 1361-6544 VL - 33 IS - 9 SP - 4752 EP - 4782 PB - IOP Publ. CY - Bristol ER -