TY - GEN A1 - Clegg, Mark R. A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1219 KW - photoresponse KW - behaviour KW - physiology KW - composition KW - photosynthesis KW - acclimation KW - Chlamydomonas KW - ecophysiology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-536174 SN - 1866-8372 IS - 1219 ER - TY - JOUR A1 - Clegg, Mark R. A1 - Wacker, Alexander A1 - Spijkerman, Elly T1 - Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates JF - Frontiers in plant science : FPLS N2 - Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics. KW - photoresponse KW - behaviour KW - physiology KW - composition KW - photosynthesis KW - acclimation KW - Chlamydomonas KW - ecophysiology Y1 - 2021 U6 - https://doi.org/10.3389/fpls.2021.707541 SN - 1664-462X IS - 12 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Spijkerman, Elly A1 - Behrend, Hella A1 - Fach, Bettina A1 - Gaedke, Ursula T1 - Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The green microalga Chlamydomonas acidophila is an important primary producer in very acidic lakes (pH 2.0-3.5), characterized by high concentrations of ferric iron (up to 1 g total Fe L-1) and low rates of primary production. It was previously suggested that these high iron concentrations result in high iron accumulation and inhibit photosynthesis in C. acidophila. To test this, the alga was grown in sterilized lake water and in medium with varying total iron concentrations under limiting and sufficient inorganic phosphorus (Pi) supply, because Pi is an important growth limiting nutrient in acidic waters. Photosynthesis and growth of C. acidophila as measured over 5 days were largely unaffected by high total iron concentrations and only decreased if free ionic Fe3+ concentrations exceeded 100 mg Fe3+ L-1. Although C. acidophila was relatively rich in iron (up to 5 mmol Fe: mol C), we found no evidence of iron toxicity. In contrast, a concentration of 260 mg total Fe L-1 (i.e. 15 mg free ionic Fe3+ L-1), which is common in many acidic lakes, reduced Pi-incorporation by 50% and will result in Pi-limited photosynthesis. The resulting Pi-limitation present at high iron and Pi concentrations was illustrated by elevated maximum Pi-uptake rates. No direct toxic effects of high iron were found, but unfavourable chemical Pi-speciation reduced growth of the acidophile alga. KW - Chlamydomonas KW - Ecotoxicology KW - Extreme environment KW - Iron toxicity KW - Phosphate limitation KW - Phytoplankton Y1 - 2018 U6 - https://doi.org/10.1016/j.scitotenv.2018.01.188 SN - 0048-9697 SN - 1879-1026 VL - 626 SP - 1342 EP - 1349 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Mubeen, Umarah T1 - Regulation of central carbon and nitrogen metabolism by Target of Rapamycin (TOR) kinase in Chlamydomonas reinhardtii T1 - Regulation des zentralen Kohlen- und Stickstoff Stoffwechsels durch die Target of Rapamycin Kinase in der Grünalge Chlamydomonas reinhardtii N2 - The highly conserved protein complex containing the Target of Rapamycin (TOR) kinase is known to integrate intra- and extra-cellular stimuli controlling nutrient allocation and cellular growth. This thesis describes three studies aimed to understand how TOR signaling pathway influences carbon and nitrogen metabolism in Chlamydomonas reinhardtii. The first study presents a time-resolved analysis of the molecular and physiological features across the diurnal cycle. The inhibition of TOR leads to 50% reduction in growth followed by nonlinear delays in the cell cycle progression. The metabolomics analysis showed that the growth repression is mainly driven by differential carbon partitioning between anabolic and catabolic processes. Furthermore, the high accumulation of nitrogen-containing compounds indicated that TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. In the second study the cause of the high accumulation of amino acids is explained. For this purpose, the effect of TOR inhibition on Chlamydomonas was examined under different growth regimes using stable 13C- and 15N-isotope labeling. The data clearly showed that an increased nitrogen uptake is induced within minutes after the inhibition of TOR. Interestingly, this increased N-influx is accompanied by increased activities of nitrogen assimilating enzymes. Accordingly, it was concluded that TOR inhibition induces de-novo amino acid synthesis in Chlamydomonas. The recognition of this novel process opened an array of questions regarding potential links between central metabolism and TOR signaling. Therefore a detailed phosphoproteomics study was conducted to identify the potential substrates of TOR pathway regulating central metabolism. Interestingly, some of the key enzymes involved in carbon metabolism as well as amino acid synthesis exhibited significant changes in the phosphosite intensities immediately after TOR inhibition. Altogether, these studies provide a) detailed insights to metabolic response of Chlamydomonas to TOR inhibition, b) identification of a novel process causing rapid upshifts in amino acid levels upon TOR inhibition and c) finally highlight potential targets of TOR signaling regulating changes in central metabolism. Further biochemical and molecular investigations could confirm these observations and advance the understanding of growth signaling in microalgae. N2 - Target of Rapamycin (TOR) ist das Zentralprotein eines hochkonservierten Proteinkomplexes, welcher Nährstoff- und Energie Ressourcen für zelluläre Wachstumsprozesse kontengiert. Diese Doktorarbeit beschreibt anhand dreier Studien, wie TOR zu diesem Zweck, in der Grünalge Chlamydomonas reinhardtii, den zentralen Stoffwechsel reguliert. Die erste Studie untersucht dazu das zeitaufgelöste Verhalten von Biomolekülen im Tagesverlauf synchronisiert wachsender Algen. Dabei konnte gezeigt werden, das der TOR Inhibitor Rapamycin das Wachstum um 50% reduziert und den Zellzyklus verzögert. Die Zellzyklus Verzögerung scheint dabei hauptsächlich durch veränderte Stoffwechselprozesse erklärt zu sein. Hierbei konnte gezeigt werden, dass TOR vor allem stickstoffhaltige Stoffwechselprodukte (z.B. Aminosäuren) kontrolliert, welche die Grundlage für Biomasseproduktion, Wachstum und den Zellzyklus bilden. Im Rahmen der zweiten Studie konnte dann der molekulare Mechanismus der Akkumulation der zellulären Aminosäuren aufgeklärt werden. Zu diesem Zweck wurden Fütterungsstudien mit 13C- und 15N-Isotopen durchgeführt. Die Ergebnisse dieser Fütterung konnten klar zeigen, dass die Inhibition von TOR zur verstärkten Aufnahme von Stickstoff in die Zelle und dessen Assimilierung in Aminosäuren führt. Die Aufdeckung dieses neuen, von TOR gesteuerten Prozesses eröffnete somit die Frage, wie die Signalkaskade von TOR zu den Enzymen der Aminosäuresynthese verläuft. Detaillierte phosphoproteomische Studien sollten dieser Frage nachgehen und Zielprotein der TOR Kinase zu identifizieren und regulierte Stoffwechselprozesses zu finden. Dabei stellte sich heraus, dass sowohl verschiedene Enzyme der Aminosäuresynthese als auch Enzyme des zentralen Stoffwechsels innerhalb weniger Minuten stark verändert wurden. Zusammenfassend kann man festhalten das die vorliegende Arbeit detaillierte Stoffwechselanalysen des Stoffwechsels nach einer TOR Inhibition aufdeckt. Hierbei ein neuer Mechanismus zur Regulation der Aminosäuresynthese, nach TOR Inhibition gezeigt werden konnte, welche durch systemische Regulation der Phosphorylierungsmuster zellulärer Proteine kontrolliert wird. Zusätzliche molekulare und biochemische Studien konnten weiterhin zeigen, dass wie TOR das zelluläre Wachstum der photosynthetischen Grünalge kontrolliert und somit steuert. KW - Target of Rapamycin kinase KW - Growth signaling KW - metabolism KW - phosphoproteomics KW - Chlamydomonas KW - Target of Rapamycin kinase KW - Wachstumssignale KW - Stoffwechsel KW - Phosphoproteomik KW - Chlamydomonas Y1 - 2018 ER - TY - JOUR A1 - Lachmann, Sabrina C. A1 - Maberly, Stephen C. A1 - Spijkerman, Elly T1 - Species-specific influence of P-i-status on inorganic carbon acquisition in microalgae (Chlorophyceae) JF - Botany N2 - Inorganic phosphorus (P-i) is often the primary limiting nutrient in freshwater ecosystems. Since P(i-)limitation affects energy transduction, and inorganic carbon (C-i) acquisition can be energy demanding, C(i-)acquisition strategies were compared in four species of green algae grown under P-i-replete and P-i-limited conditions predominantly at low and partly at high CO2. Although P-i-limitation was evident by the 10-fold higher cellular C:P ratio and enhanced phosphatase activity, it only decreased C-i-acquisition to a small extent. Nonetheless, the effects of Pi-limitation on both CO2 and HCO3- acquisition were demonstrated. Decreased CO2 acquisition under conditions of Pi limitation was mainly visible in the maximum uptake rate (V-max) and, for the neutrophile Scenedesmus vacuolatus, in the affinity for CO2 acquisition. Discrimination against C-13 was higher under P-i-limited, high CO2 conditions, compared with P-i-replete, highCO(2) conditions, in Chlamydomonas acidophila and S. vacuolatus. In the pH-drift experiments, HCO3- acquisition was reduced in P-i-limited C. reinhardtii. In general, energy demanding bicarbonate uptake was indicated by the less strong discrimination against (13)Cunder lowCO(2) conditions in the neutrophiles (HCO3- users), separating them from the acidophilic or acidotolerant species (CO2 users). The high variability of the influence of Pi supply among different green algal species is linked to their species-specific C(i-)acquisition strategies. KW - CCM KW - Chlamydomonas KW - inorganic carbon uptake kinetics KW - inorganic phosphorus limitation KW - stable carbon isotope discrimination Y1 - 2017 U6 - https://doi.org/10.1139/cjb-2017-0082 SN - 1916-2790 SN - 1916-2804 VL - 95 SP - 943 EP - 952 PB - NRC Research Press CY - Ottawa ER - TY - JOUR A1 - Lachmann, Sabrina C. A1 - Maberly, Stephen C. A1 - Spijkerman, Elly T1 - ECOPHYSIOLOGY MATTERS: LINKING INORGANIC CARBON ACQUISITION TO ECOLOGICAL PREFERENCE IN FOUR SPECIES OF MICROALGAE (CHLOROPHYCEAE) JF - Journal of phycology N2 - The effect of CO2 supply is likely to play an important role in algal ecology. Since inorganic carbon (C-i) acquisition strategies are very diverse among microalgae and C-i availability varies greatly within and among habitats, we hypothesized that C-i acquisition depends on the pH of their preferred natural environment (adaptation) and that the efficiency of C-i uptake is affected by CO2 availability (acclimation). To test this, four species of green algae originating from different habitats were studied. The pH-drift and C-i uptake kinetic experiments were used to characterize C-i acquisition strategies and their ability to acclimate to high and low CO2 conditions and high and low pH was evaluated. Results from pH drift experiments revealed that the acidophile and acidotolerant Chlamydomonas species were mainly restricted to CO2, whereas the two neutrophiles were efficient bicarbonate users. CO2 compensation points in low CO2-acclimated cultures ranged between 0.6 and 1.4 mu M CO2 and acclimation to different culture pH and CO2 conditions suggested that CO2 concentrating mechanisms were present in most species. High CO2 acclimated cultures adapted rapidly to low CO2 condition during pH-drifts. C-i uptake kinetics at different pH values showed that the affinity for C-i was largely influenced by external pH, being highest under conditions where CO2 dominated the C-i pool. In conclusion, C-i acquisition was highly variable among four species of green algae and linked to growth pH preference, suggesting that there is a connection between C-i acquisition and ecological distribution. KW - acidophile KW - carbon acquisition KW - CCM KW - Chlamydomonas KW - Chlorella KW - CO2 supply KW - extremophile KW - inorganic carbon uptake kinetics KW - pH-drift KW - Scenedesmus Y1 - 2016 U6 - https://doi.org/10.1111/jpy.12462 SN - 0022-3646 SN - 1529-8817 VL - 52 SP - 1051 EP - 1063 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Spijkerman, Elly A1 - Stojkovic, Slobodanka A1 - Holland, Daryl A1 - Lachmann, Sabrina C. A1 - Beardall, John T1 - Nutrient induced fluorescence transients (NIFTs) provide a rapid measure of P and C (co-)limitation in a green alga JF - European journal of phycology N2 - Nutrient Induced Fluorescence Transients (NIFTs) have been shown to be a possible way of testing for the limiting nutrient in algal populations. In this study we tested the hypothesis that NIFTs can be used to detect a (co-)limitation for inorganic phosphorus (Pi) and CO2 in the green alga Chlamydomonas acidophila and that the magnitude of the NIFTs can be related to cellular P:C ratios. We show a co-limitation response for Pi and CO2 via traditional nutrient enrichment experiments in natural phytoplankton populations dominated by C. acidophila. We measured NIFT responses after a Pi- or a CO2-spike in C. acidophila batch cultures at various stages of Pi and inorganic C limitation. Significant NIFTs were observed in response to spikes in both nutrients. The NIFT response to a Pi-spike showed a strong negative correlation with cellular P:C ratio that was pronounced below 3 mmol P: mol C (equivalent to 0.2 pg P cell(-1)). Both cellular P and C content influenced the extent of the Pi-NIFT response. The NIFT response to a CO2-spike correlated to low CO2 culturing conditions and also had a negative correlation with cellular P content. A secondary response within the Pi-NIFT response was related to the CO2 concentration and potentially reflected co-limitation. In conclusion, NIFTs provided a quick and reliable method to detect the growth-limiting nutrient in an extremophile green alga, under Pi-, CO2- and Pi/CO2 (co-)limited growth conditions. KW - acidophile KW - Chlamydomonas KW - CO2 concentrating mechanism KW - CO2 limitation KW - extremophile KW - nutrient limitation KW - photosynthesis response KW - phytoplankton KW - stoichiometry Y1 - 2016 U6 - https://doi.org/10.1080/09670262.2015.1095355 SN - 0967-0262 SN - 1469-4433 VL - 51 SP - 47 EP - 58 PB - Hindawi CY - Abingdon ER - TY - JOUR A1 - Piepho, Maike A1 - Arts, Michael T. A1 - Wacker, Alexander T1 - Species-specific variation in fatty acid concentrations of four phytoplankton species does phosphorus supply influence the effect of light intensity of temperature? JF - Journal of phycology N2 - We tested, in the laboratory, the influence of light intensity, temperature, and phosphorus (P) supply on fatty acid (FA) concentrations of four freshwater algae: the green algae Scenedesmus quadricauda (Turpin) Breb. and Chlamydomonas globosa J. Snow, the cryptophyte Cryptomonas ovata Ehrenb., and the diatom Cyclotella meneghiniana Kutz. We investigated the main and interactive effects of two variables on algal FA concentrations (i.e., light intensity and P supply or temperature and P supply). Interactive effects of light intensity and P supply were most pronounced in C. meneghiniana, but were also found in S. quadricauda and C. ovata. Changes in several saturated and unsaturated FA concentrations with light were more distinct in the low-P treatments than in the high-P treatments. Interactive effects of temperature and P supply on various FA concentrations were observed in all four species, but there was no consistent pattern. In lake ecosystems, P limitation often coincides with high light intensities and temperatures in summer. Therefore, it is important to examine how combinations of these environmental conditions affect FA concentrations of primary producers that are important sources of FAs for higher trophic levels. KW - Chlamydomonas KW - Cryptomonas KW - Cyclotella KW - fatty acids KW - light KW - lipids KW - phosphate KW - PUFA KW - Scenedesmus KW - temperature Y1 - 2012 U6 - https://doi.org/10.1111/j.1529-8817.2011.01103.x SN - 0022-3646 VL - 48 IS - 1 SP - 64 EP - 73 PB - Wiley-Blackwell CY - Malden ER - TY - THES A1 - Winck, Flavia Vischi T1 - Nuclear proteomics and transcription factor profiling in Chlamydomonas reinhardtii T1 - Nukleare Proteomics und Transkriptionsfaktoren : Profiling in Chlamydomonas reinhardtii N2 - The transcriptional regulation of the cellular mechanisms involves many different components and different levels of control which together contribute to fine tune the response of cells to different environmental stimuli. In some responses, diverse signaling pathways can be controlled simultaneously. One of the most important cellular processes that seem to possess multiple levels of regulation is photosynthesis. A model organism for studying photosynthesis-related processes is the unicellular green algae Chlamydomonas reinhardtii, due to advantages related to culturing, genetic manipulation and availability of genome sequence. In the present study, we were interested in understanding the regulatory mechanisms underlying photosynthesis-related processes. To achieve this goal different molecular approaches were followed. In order to indentify protein transcriptional regulators we optimized a method for isolation of nuclei and performed nuclear proteome analysis using shotgun proteomics. This analysis permitted us to improve the genome annotation previously published and to discover conserved and enriched protein motifs among the nuclear proteins. In another approach, a quantitative RT-PCR platform was established for the analysis of gene expression of predicted transcription factor (TF) and other transcriptional regulator (TR) coding genes by transcript profiling. The gene expression profiles for more than one hundred genes were monitored in time series experiments under conditions of changes in light intensity (200 µE m-2 s-1 to 700 µE m-2 s-1), and changes in concentration of carbon dioxide (5% CO2 to 0.04% CO2). The results indicate that many TF and TR genes are regulated in both environmental conditions and groups of co-regulated genes were found. Our findings also suggest that some genes can be common intermediates of light and carbon responsive regulatory pathways. These approaches together gave us new insights about the regulation of photosynthesis and revealed new candidate regulatory genes, helping to decipher the gene regulatory networks in Chlamydomonas. Further experimental studies are necessary to clarify the function of the candidate regulatory genes and to elucidate how cells coordinately regulate the assimilation of carbon and light responses. N2 - Pflanzen nutzen das Sonnenlicht um Substanzen, sogenannte Kohlenhydrate, zu synthetisieren. Diese können anschließend als Energielieferant für das eigene Wachstum genutzt werden. Der aufbauende Prozess wird als Photosynthese bezeichnet. Ein wichtiges Anliegen ist deshalb zu verstehen, wie Pflanzen äußere Einflüsse wahrnehmen und die Photosynthese dementsprechend regulieren. Ihre Zellen tragen diese Informationen in den Genen. Die Pflanzen nutzen aber in der Regel nicht alle ihre Gene gleichzeitig, die sie zur Anpassung an Umwelteinflüsse besitzen. Zu meist wird nur eine Teilfraktion der gesamten Information benötigt. Wir wollten der Frage nachgehen, welche Gene die Zellen für welche Situation regulieren. Im Zellkern gibt es Proteine, sogenannte Transkriptionsfaktoren, die spezifische Gene finden können und deren Transkription modulieren. Wenn ein Gen gebraucht wird, wird seine Information in andere Moleküle übersetzt (transkribiert), sogenannte Transkripte. Die Information dieser Transkripte wird benutzt um Proteine, Makromoleküle aus Aminsäuren, zu synthetisieren. Aus der Transkription eines Gens kann eine große Zahl des Transkripts entstehen. Es ist wahrscheinlich, dass ein Gen, dass gerade gebraucht wird, mehr Transkriptmoleküle hat als andere Gene. Da die Transkriptionsfaktoren mit der Transkription der Gene interferieren können, entwickelten wir in der vorliegenden Arbeit Strategien zur Identifikation dieser im Zellkern zu findenden Proteine mittels eines „Proteomics“-Ansatzes. Wir entwickelten weiterhin eine Strategie zur Identififikation von Transkripten Transkriptionsfaktor-codierender Gene in der Zelle und in welche Menge sie vorkommen. Dieser Ansatz wird als „Transcript-Profiling“ bezeichnet. Wir fanden Zellkern-lokalisierte Proteine, die als Signalmoleküle funktionieren könnten und Transkripte, die bei unterschiedlichen Umweltbedingungen in der Zelle vorhanden waren. Wir benutzten, die oben genannten Ansätze um die einzellige Grünalge Chlamydomonas zu untersuchen. Die Informationen, die wir erhielten, halfen zu verstehen welche Transkriptionsfaktoren notwendig sind, damit Chlamydomonas bei unterschiedlichen Umweltbedingungen, wie z.B. unterschiedliche Lichtintensitäten und unterschiedlicher Konzentration von Kohlenstoffdioxid, überlebt. KW - Proteomics KW - Transkriptionsfaktoren KW - Pflanzen KW - Chlamydomonas KW - Transcriptomics KW - Proteomics KW - Transcription factors KW - Plants KW - Chlamydomonas KW - Transcriptomics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-53909 ER - TY - JOUR A1 - Winck, Flavia Vischi A1 - Kwasniewski, Miroslaw A1 - Wienkoop, Stefanie A1 - Müller-Röber, Bernd T1 - An optimized method for the isolation of nuclei from chlamydomas Reinhardtii (Chlorophyceae) JF - Journal of phycology N2 - The cell nucleus harbors a large number of proteins involved in transcription, RNA processing, chromatin remodeling, nuclear signaling, and ribosome assembly. The nuclear genome of the model alga Chlamydomonas reinhardtii P. A. Dang. was recently sequenced, and many genes encoding nuclear proteins, including transcription factors and transcription regulators, have been identified through computational discovery tools. However, elucidating the specific biological roles of nuclear proteins will require support from biochemical and proteomics data. Cellular preparations with enriched nuclei are important to assist in such analyses. Here, we describe a simple protocol for the isolation of nuclei from Chlamydomonas, based on a commercially available kit. The modifications done in the original protocol mainly include alterations of the differential centrifugation parameters and detergent-based cell lysis. The nuclei-enriched fractions obtained with the optimized protocol show low contamination with mitochondrial and plastid proteins. The protocol can be concluded within only 3 h, and the proteins extracted can be used for gel-based and non-gel-based proteomic approaches. KW - 2D gel electrophoresis KW - algae KW - Chlamydomonas KW - nuclear proteins KW - nucleus KW - proteomics Y1 - 2011 U6 - https://doi.org/10.1111/j.1529-8817.2011.00967.x SN - 0022-3646 VL - 47 IS - 2 SP - 333 EP - 340 PB - Wiley-Blackwell CY - Malden ER -