TY - THES A1 - Sharma, Shubham T1 - Integrated approaches to earthquake forecasting T1 - Integrierte Ansätze zur Vorhersage von Erdbeben BT - insights from Coulomb stress, seismotectonics, and aftershock sequences BT - Erkenntnisse aus Coulomb-Stress, Seismotektonik und Nachbebenfolgen N2 - A comprehensive study on seismic hazard and earthquake triggering is crucial for effective mitigation of earthquake risks. The destructive nature of earthquakes motivates researchers to work on forecasting despite the apparent randomness of the earthquake occurrences. Understanding their underlying mechanisms and patterns is vital, given their potential for widespread devastation and loss of life. This thesis combines methodologies, including Coulomb stress calculations and aftershock analysis, to shed light on earthquake complexities, ultimately enhancing seismic hazard assessment. The Coulomb failure stress (CFS) criterion is widely used to predict the spatial distributions of aftershocks following large earthquakes. However, uncertainties associated with CFS calculations arise from non-unique slip inversions and unknown fault networks, particularly due to the choice of the assumed aftershocks (receiver) mechanisms. Recent studies have proposed alternative stress quantities and deep neural network approaches as superior to CFS with predefined receiver mechanisms. To challenge these propositions, I utilized 289 slip inversions from the SRCMOD database to calculate more realistic CFS values for a layered-half space and variable receiver mechanisms. The analysis also investigates the impact of magnitude cutoff, grid size variation, and aftershock duration on the ranking of stress metrics using receiver operating characteristic (ROC) analysis. Results reveal the performance of stress metrics significantly improves after accounting for receiver variability and for larger aftershocks and shorter time periods, without altering the relative ranking of the different stress metrics. To corroborate Coulomb stress calculations with the findings of earthquake source studies in more detail, I studied the source properties of the 2005 Kashmir earthquake and its aftershocks, aiming to unravel the seismotectonics of the NW Himalayan syntaxis. I simultaneously relocated the mainshock and its largest aftershocks using phase data, followed by a comprehensive analysis of Coulomb stress changes on the aftershock planes. By computing the Coulomb failure stress changes on the aftershock faults, I found that all large aftershocks lie in regions of positive stress change, indicating triggering by either co-seismic or post-seismic slip on the mainshock fault. Finally, I investigated the relationship between mainshock-induced stress changes and associated seismicity parameters, in particular those of the frequency-magnitude (Gutenberg-Richter) distribution and the temporal aftershock decay (Omori-Utsu law). For that purpose, I used my global data set of 127 mainshock-aftershock sequences with the calculated Coulomb Stress (ΔCFS) and the alternative receiver-independent stress metrics in the vicinity of the mainshocks and analyzed the aftershocks properties depend on the stress values. Surprisingly, the results show a clear positive correlation between the Gutenberg-Richter b-value and induced stress, contrary to expectations from laboratory experiments. This observation highlights the significance of structural heterogeneity and strength variations in seismicity patterns. Furthermore, the study demonstrates that aftershock productivity increases nonlinearly with stress, while the Omori-Utsu parameters c and p systematically decrease with increasing stress changes. These partly unexpected findings have significant implications for future estimations of aftershock hazard. The findings in this thesis provides valuable insights into earthquake triggering mechanisms by examining the relationship between stress changes and aftershock occurrence. The results contribute to improved understanding of earthquake behavior and can aid in the development of more accurate probabilistic-seismic hazard forecasts and risk reduction strategies. N2 - Ein umfassendes Verständnis der seismischen Gefahr und Erdbebenauslösung ist wichtig für eine Minderung von Erdbebenrisiken. Die zerstörerische Natur von Erdbeben motiviert Forscher dazu, trotz der scheinbaren Zufälligkeit der Erdbebenereignisse an Vorhersagen zu arbeiten. Das Verständnis der den Beben zugrunde liegenden Mechanismen und Muster ist angesichts ihres Potenzials für weitreichende Verwüstung und den Verlust von Menschenleben von entscheidender Bedeutung. Diese Arbeit kombiniert Methoden, einschließlich der Berechnung der Coulombschen Spannung und der Analyse von Nachbeben, um die Komplexitäten von Erdbeben besser zu verstehen und letztendlich die Bewertung der seismischen Gefahr zu verbessern. Das Coulomb Spannungskriterium (CFS) wird oft verwendet, um die räumliche Verteilung von Nachbeben nach großen Erdbeben vorherzusagen. Jedoch ergeben sich Unsicherheiten bei der Berechnung von CFS aus nicht eindeutigen slip-inversion und der unbekannten Störungsnetzwerken, insbesondere aufgrund der Unsicherheit bezüglich der Nachbebenmechanismen (Empfänger). Neueste Studien deuten darauf hin dass alternative Spannungsgrößen und Deep-Learning-Ansätze gegenüber CFS mit vordefinierten Empfängermechanismen. Um diese Ergebnisse zu hinterfragen, habe ich 289 Slip-inversion uberlegensind aus der SRCMOD-Datenbank verwendet, um realistischere CFS-Werte für einen geschichteten Halbraum und variable Empfängermechanismen zu berechnen. Dabei habe ich auch den Einfluss von Magnitudenschwellenwerten, Gittergrößenvariationen und der Nachbeben-Dauer auf die vorhersagemöglichkeiten der Spannungsmetriken unter Verwendung der ROC-Analyse (Receiver Operating Characteristic) untersucht. Die Ergebnisse zeigen, dass die berudzsidtizung von variablen Empfangermechanism und größere Nachbeben und kürzere Zeiträume die vorhersagekraft steigern, wobei die relative Rangfolge der verschiedenen Spannungsmetriken nicht geändert wird. Um die Coulomb Spannungsberechnungen genauer mit den Ergebnissen von Erdbebenstudien abzugleichen, habe ich die Quelleneigenschaften des Erdbebens von Kaschmir aus dem Jahr 2005 und seiner Nachbeben mit dem ziel, die Seismotektonik des NW-Himalaya Syntaxis zu entschlüsseln, detailliert untersucht. Ich habe gleichzeitig das Hauptbeben und seine größten Nachbeben unter Verwendung von seismischen Phaseneinsetzen relokalisiert und anschließend eine umfassende Analyse der Coulomb Spannungsänderungen auf den Bruchflächen der Nachbeben durchgeführt. Durch die Berechnung der Coulomb Spannungsänderungen an den während der Nachbeben aktivierten Störungen konnte ich herausfinden, dass alle großen Nachbeben in Regionen mit positiven Spannungsänderungen liegen, was auf eine Auslösung durch entweder ko-seismische oder post-seismische Verschiebungen des Hauptbebens hinweist. Schließlich habe ich die Beziehung zwischen den durch Hauptbeben verursachten Spannungsänderungen und den damit verbundenen seismischen Parametern untersucht, insbesondere denen der Häufigkeits-Magnituden (Gutenberg-Richter) Verteilung und des zeitlichen Nachbebenabklingens (Omori-Utsu-Gesetz). Zu diesem Zweck habe ich meinen globalen Datensatz von 127 Hauptbeben-Nachbeben-Sequenzen mit den in der Umgebung der Hauptbeben berechneten Coulomb Spannungen ($\Delta$CFS) zusammen mit den alternativen, empfänger-unabhängigen Spannungsmetriken, verwendet und die Eigenschaften in Abhängigkeit der Spannungswerte analysiert. Überraschenderweise zeigen die Ergebnisse eine klar positive Korrelation zwischen dem $b$-Wert der Gutenberg-Richter-Verteilung und der induzierten Spannung, was im Kontrast zu den Erwartungen aus Laborexperimenten steht. Diese Beobachtung unterstreicht die Bedeutung struktureller Heterogenitäten und Festigkeitsvariationen in seismischen Mustern. Darüber hinaus zeigt die Studie, dass die Anzahl von Nachbeben nichtlinear mit der Spannung zunimmt, während die Omori-Utsu-Parameter $c$ und $p$ systematisch mit zunehmenden Spannungsänderungen abnehmen. Diese teilweise unerwarteten Ergebnisse haben bedeutende Auswirkungen auf zukünftige Abschätzungen der Nachbebengefahr. Die Ergebnisse dieser Arbeit liefern wertvolle Einblicke in die Mechanismen der Erdbebenauslösung, indem sie die Beziehung zwischen Spannungsänderungen und dem Auftreten von Nachbeben untersuchen. Die Ergebnisse tragen zu einem besseren Verständnis des Verhaltens von Erdbeben bei und können bei der Entwicklung genauerer probabilistischer, seismischer Gefahreneinschätzungen und Risikominderungsstrategien helfen. KW - earthquake KW - forecasting KW - hazards KW - seismology KW - Erdbeben KW - Vorhersage KW - Gefahren KW - Seismologie Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-636125 ER - TY - THES A1 - Metzger, Sabrina T1 - Neotectonic deformation over space and time as observed by space-based geodesy T1 - Über die Vermessung neotektonischer Deformation in Raum und mit Hilfe von satellitengestützter Geodäsie N2 - Alfred Wegeners ideas on continental drift were doubted for several decades until the discovery of polarization changes at the Atlantic seafloor and the seismic catalogs imaging oceanic subduction underneath the continental crust (Wadati-Benioff Zone). It took another 20 years until plate motion could be directly observed and quantified by using space geodesy. Since then, it is unthinkable to do neotectonic research without the use of satellite-based methods. Thanks to a tremendeous increase of instrumental observations in space and time over the last decades we significantly increased our knowledge on the complexity of the seismic cycle, that is, the interplay of tectonic stress build up and release. Our classical assumption, earthquakes were the only significant phenomena of strain release previously accumulated in a linear fashion, is outdated. We now know that this concept is actually decorated with a wide range of slow and fast processes such as triggered slip, afterslip, post-seismic and visco-elastic relaxation of the lower crust, dynamic pore-pressure changes in the elastic crust, aseismic creep, slow slip events and seismic swarms. On the basis of eleven peer-reviewed papers studies I here present the diversity of crustal deformation processes. Based on time-series analyses of radar imagery and satellited-based positioning data I quantify tectonic surface deformation and use numerical and analytical models and independent geologic and seismologic data to better understand the underlying crustal processes. The main part of my work focuses on the deformation observed in the Pamir, the Hindu Kush and the Tian Shan that together build the highly active continental collision zone between Northwest-India and Eurasia. Centered around the Sarez earthquake that ruptured the center of the Pamir in 2015 I present diverse examples of crustal deformation phenomena. Driver of the deformation is the Indian indenter, bulldozing into the Pamir, compressing the orogen that then collapses westward into the Tajik depression. A second natural observatory of mine to study tectonic deformation is the oceanic subduction zone in Chile that repeatedly hosts large earthquakes of magnitude 8 and more. These are best to study post-seismic relaxation processes and coupling of large earthquake. My findings nicely illustrate how complex fashion and how much the different deformation phenomena are coupled in space and time. My publications contribute to the awareness that the classical concept of the seismic cycle needs to be revised, which, in turn, has a large influence in the classical, probabilistic seismic hazard assessment that primarily relies on statistically solid recurrence times. N2 - Alfred Wegeners Thesen des Kontinentaldrifts fanden erst in den 1960er und 1970er Jahren Akzeptanz, als die krustalen Polarisationswechsel auf dem atlantischen Meeresboden entdeckt wurden und Erdbebenkataloge das Abtauchen von ozeanischer Kruste unter kontinentale Kruste abbildeten (Wadati-Benioff-Zone). Es dauerte jedoch weitere 20 Jahre, bis die Geodäsie erstmals Plattenbewegung sicht- und quantifizierbar machte. Seit dann sind satellitengestützte Messmethoden aus der neotektonischen Forschung nicht mehr wegzudenken. Dank einer stetig (zeitlich und räumlich) wachsenden Anzahl instrumenteller Beobachtungsdaten wird unser Verständnis des Erdbebenzyklus—des Wechselspiels zwischen tektonischem Spannungsauf- und -abbau—immer komplexer. Das klassische Konzept, nur Erdbeben setzten die zuvor linear aufgebaute Spannungsenergie instantan frei, wird heutzutage durch eine Vielzahl von zusätzlichen schnelleren und langsameren Prozessen ergänzt. Beispiele dafür sind getriggerte Versätze (triggered slip), Nachbeben (afterslip), postseismische und visko-elastische Relaxation der tieferen Kruste, dynamische, elastische Veränderungen des Gesteins-Porendrucks, aseismisches Kriechen sowie Spannungsabbau durch kleine Erdbebenschwärme. Anhand von elf begutachteten und bereits veröffentlichten Arbeiten präsentiere ich in meiner Habilitationsschrift die Diversität krustaler Deformationsprozesse. Ich analysiere Zeitreihen von Radar-Satellitenaufnahmen und satellitengestützten Positionierungssystemen um die tektonische Oberflächenbewegung zu quantifizieren. Der Vergleich von kinematischen Beobachtungen mit geologischen und seismischen Indizien sowie die Simulation ebenjener durch rechnergestützte Modelle ermöglichen mir, die verursachenden krustalen Prozesse besser verstehen. Der Hauptteil meiner Arbeiten beschreibt rezente, krustale Bewegungen im Pamir, Hindu Kush und Tien Shan, welche zusammen das westliche Ende der kontinentalen Kollisionszone zwischen dem indischen und eurasischen Kontinent bilden. Rund um ein starkes Erdbeben, welches 2015 den Zentralpamir erschüttert hat, zeige ich vielseitige Beispiele von hochaktiver krustaler Deformation. Verursacht werden diese Bewegungen durch den nordwestindischen Kontinentalsporn, welcher (fast) ungebremst in den Pamir hineinrammt, ihn auftürmt, zusammenquetscht, und ihn gravitationsbedingt gegen Westen ins tadschikische Becken kollabieren lässt. Der zweite thematische Schwerpunkt liegt auf Prozessen, welche durch Megathrust-Erdbeben, also Beben mit einer Magnitude>8, hervorgerufen werden. Diese Anwendungen fokussieren sich auf die ozeanischen Subduktionszone von Chile und zeigen die Wichtigkeit vertikaler Hebungsdaten um, beispielsweise, den Einfluss tektonischer Prozesse auf den Gesteins-Porendruck zu verstehen. Zusammenfassend veranschaulichen und bestätigen meine Arbeiten, wie stark und komplex die oben beschriebenen Prozesse räumlich und zeitlich korrelieren, und dass das klassische Konzept des Erdbebenzyklus überholt ist. Letztere Einsicht hat grossen Einfluss auf probabilistische seismische Gefährdungsanalysen, welche grundsätzlich statistische Vorhersagbarkeit annehmen. KW - radar satellite interferometry KW - tectonics KW - geodesy KW - seismology KW - earthquakes KW - InSAR KW - InSAR KW - Erdbeben KW - Geodäsie KW - Radar-Satelliteninterferometrie KW - Seismologie KW - Tektonik Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-599225 ER - TY - THES A1 - Rodriguez Piceda, Constanza T1 - Thermomechanical state of the southern Central Andes T1 - Thermomechanischer Zustand der südlichen Zentral Anden BT - implications for active deformation patterns in the transition from flat to steep subduction BT - Implikationen für aktive Deformationsmuster beim Übergang von flacher zu steiler Subduktion N2 - The Andes are a ~7000 km long N-S trending mountain range developed along the South American western continental margin. Driven by the subduction of the oceanic Nazca plate beneath the continental South American plate, the formation of the northern and central parts of the orogen is a type case for a non-collisional orogeny. In the southern Central Andes (SCA, 29°S-39°S), the oceanic plate changes the subduction angle between 33°S and 35°S from almost horizontal (< 5° dip) in the north to a steeper angle (~30° dip) in the south. This sector of the Andes also displays remarkable along- and across- strike variations of the tectonic deformation patterns. These include a systematic decrease of topographic elevation, of crustal shortening and foreland and orogenic width, as well as an alternation of the foreland deformation style between thick-skinned and thin-skinned recorded along- and across the strike of the subduction zone. Moreover, the SCA are a very seismically active region. The continental plate is characterized by a relatively shallow seismicity (< 30 km depth) which is mainly focussed at the transition from the orogen to the lowland areas of the foreland and the forearc; in contrast, deeper seismicity occurs below the interiors of the northern foreland. Additionally, frequent seismicity is also recorded in the shallow parts of the oceanic plate and in a sector of the flat slab segment between 31°S and 33°S. The observed spatial heterogeneity in tectonic and seismic deformation in the SCA has been attributed to multiple causes, including variations in sediment thickness, the presence of inherited structures and changes in the subduction angle of the oceanic slab. However, there is no study that inquired the relationship between the long-term rheological configuration of the SCA and the spatial deformation patterns. Moreover, the effects of the density and thickness configuration of the continental plate and of variations in the slab dip angle in the rheological state of the lithosphere have been not thoroughly investigated yet. Since rheology depends on composition, pressure and temperature, a detailed characterization of the compositional, structural and thermal fields of the lithosphere is needed. Therefore, by using multiple geophysical approaches and data sources, I constructed the following 3D models of the SCA lithosphere: (i) a seismically-constrained structural and density model that was tested against the gravity field; (ii) a thermal model integrating the conversion of mantle shear-wave velocities to temperature with steady-state conductive calculations in the uppermost lithosphere (< 50 km depth), validated by temperature and heat-flow measurements; and (iii) a rheological model of the long-term lithospheric strength using as input the previously-generated models. The results of this dissertation indicate that the present-day thermal and rheological fields of the SCA are controlled by different mechanisms at different depths. At shallow depths (< 50 km), the thermomechanical field is modulated by the heterogeneous composition of the continental lithosphere. The overprint of the oceanic slab is detectable where the oceanic plate is shallow (< 85 km depth) and the radiogenic crust is thin, resulting in overall lower temperatures and higher strength compared to regions where the slab is steep and the radiogenic crust is thick. At depths > 50 km, largest temperatures variations occur where the descending slab is detected, which implies that the deep thermal field is mainly affected by the slab dip geometry. The outcomes of this thesis suggests that long-term thermomechanical state of the lithosphere influences the spatial distribution of seismic deformation. Most of the seismicity within the continental plate occurs above the modelled transition from brittle to ductile conditions. Additionally, there is a spatial correlation between the location of these events and the transition from the mechanically strong domains of the forearc and foreland to the weak domain of the orogen. In contrast, seismicity within the oceanic plate is also detected where long-term ductile conditions are expected. I therefore analysed the possible influence of additional mechanisms triggering these earthquakes, including the compaction of sediments in the subduction interface and dehydration reactions in the slab. To that aim, I carried out a qualitative analysis of the state of hydration in the mantle using the ratio between compressional- and shear-wave velocity (vp/vs ratio) from a previous seismic tomography. The results from this analysis indicate that the majority of the seismicity spatially correlates with hydrated areas of the slab and overlying continental mantle, with the exception of the cluster within the flat slab segment. In this region, earthquakes are likely triggered by flexural processes where the slab changes from a flat to a steep subduction angle. First-order variations in the observed tectonic patterns also seem to be influenced by the thermomechanical configuration of the lithosphere. The mechanically strong domains of the forearc and foreland, due to their resistance to deformation, display smaller amounts of shortening than the relatively weak orogenic domain. In addition, the structural and thermomechanical characteristics modelled in this dissertation confirm previous analyses from geodynamic models pointing to the control of the observed heterogeneities in the orogen and foreland deformation style. These characteristics include the lithospheric and crustal thickness, the presence of weak sediments and the variations in gravitational potential energy. Specific conditions occur in the cold and strong northern foreland, which is characterized by active seismicity and thick-skinned structures, although the modelled crustal strength exceeds the typical values of externally-applied tectonic stresses. The additional mechanisms that could explain the strain localization in a region that should resist deformation are: (i) increased tectonic forces coming from the steepening of the slab and (ii) enhanced weakening along inherited structures from pre-Andean deformation events. Finally, the thermomechanical conditions of this sector of the foreland could be a key factor influencing the preservation of the flat subduction angle at these latitudes of the SCA. N2 - Die Anden sind eine ~7000 km lange N-S-verlaufende Hochgebirgskette, die entlang des westlichen südamerikanischen Kontinentalrandes entstanden ist. Aufgrund der Subduktion der ozeanischen Nazca-Platte unter die kontinentale südamerikanische Platte ist die Bildung des nördlichen und zentralen Teils des Gebirges typisch für eine nicht-kollisionale Orogenese. In den südlichen Zentralanden (SZA, 29-39° S) verändert sich der Subduktionswinkel der ozeanischen Platte zwischen 33 ° S und 35 ° S von fast horizontal (< 5° Einfallen) im Norden zu einem steileren Winkel (~ 30 ° Einfallen) im Süden. Begleitet wird dieser Trend von systematischen, Süd-gerichteten Abnahmen der topographischen Erhebung, der Krusteneinengung und der Vorland- und Orogenbreite, sowie von Variationen im Deformationsstil des Vorlandes, wo die Einengung des Deckgebirges in unterschiedlichem Maße von einer entsprechenden Deformation des Grundgebirges begleitet wird. . Darüber hinaus sind die SZA eine seismisch sehr aktive Region. Die Kontinentalplatte zeichnet sich durch eine relativ flache Seismizität (< 30 km Tiefe) aus, die sich hauptsächlich auf die Übergänge vom Orogen zu den Vorlandbereichen konzentriert; im Gegensatz dazu tritt tiefere Seismizität in den zentralen Bereichen des nördlichen Vorlandes auf. Darüber hinaus ist häufig auftretende Seismizität auch in den flachen Teilen der ozeanischen Platte und im Plattensegment mit flach einfallender Subduktion zwischen 31 ° S und 33 ° S festzustellen. Die beobachtete räumliche Heterogenität der tektonischen und seismischen Deformation in den SZA wurde auf mehrere Ursachen zurückgeführt, darunter Schwankungen der Sedimentmächtigkeit, das Vorhandensein vererbter Strukturen und Veränderungen des Subduktionswinkels der ozeanischen Platte. Es gibt jedoch bislang keine Studie, die den Zusammenhang zwischen der langfristigen rheologischen Konfiguration der SZA und den räumlichen Deformationsmustern untersucht hat. Darüber hinaus wurden die Auswirkungen der Dichte- und Mächtigkeitsvariationen in der kontinentalen Oberplatte und der verschiedenen Subduktionswinkel auf den rheologischen Zustand der Lithosphäre noch nicht grundlegend untersucht. Da die Rheologie von der Gesteinsart, dem Druck und der Temperatur abhängt, ist eine detaillierte Charakterisierung der Zusammensetzung, Struktur und des thermischen Feldes der Lithosphäre erforderlich. Daher habe ich unter Verwendung kombinierter Modellierungsansätze und geophysikalischer Daten die folgenden 3D Modelle für die Lithosphäre der SZA konstruiert: (i) ein auf seismischen Daten basierendes Struktur- und Dichtemodell, das anhand des beobachteten Schwerefeldes validiert wurde; (ii) ein thermisches Modell, das die Umwandlung von Mantelscherwellengeschwindigkeiten in Temperaturen mit Berechnungen des konduktiven Wärmetransports für stationäre Bedingungen in der obersten Lithosphäre (<50 km Tiefe) integriert und durch Temperatur- und Wärmeflussmessungen validiert wurde; und (iii) ein rheologisches Modell der langfristig bedingten Lithosphärenfestigkeit, das auf den zuvor erzeugten Modellen gründet. Die Ergebnisse dieser Dissertation zeigen, dass die thermischen und rheologischen Bedingungen in den heutigen SZA durch verschiedene Mechanismen in unterschiedlichen Tiefen gesteuert werden. In flachen Tiefen (< 50 km) wird das thermomechanische Feld durch die heterogene Zusammensetzung der kontinentalen Lithosphäre differenziert. Eine Überprägung durch die ozeanische Platte ist dort nachweisbar, wo die ozeanische Platte flach (< 85 km tief) und die radiogene Kruste dünn ist, was insgesamt zu niedrigeren Temperaturen und einer höheren Festigkeit im Vergleich zu Bereichen führt, in denen die Platte steil einfällt und die radiogene Kruste dick ist. In Tiefen > 50 km treten die größten Temperaturschwankungen dort auf, wo die subduzierten Platte nachgewiesen wurde, was bedeutet, dass das tiefe thermische Feld den Subduktionswinkel gesteuert wird. Die Ergebnisse dieser Doktorarbeit legen nahe, dass der langfristige thermomechanische Zustand der Lithosphäre die räumliche Verteilung rezenter Seismizität beeinflusst. Der größte Anteil innerhalb der Kontinentalplatte registrierter Erdbebentätigkeit tritt oberhalb des modellierten Übergangs von spröden zu duktilen Bedingungen auf. Außerdem besteht eine räumliche Korrelation zwischen Erdbebenclustern und den Übergängen von den mechanisch rigideren Vorlandbereichen (Forearc und Foreland) zum mechanisch schwächeren Orogen. Demgegenüber wird vermehrte Seismizität innerhalb der ozeanischen Platte auch dort nachgewiesen, wo entsprechend der Modellierung langfristig duktile Bedingungen erwartet werden. Ich habe daher den möglichen Einfluss zusätzlicher Mechanismen untersucht, die ein Auslösen dieser Erdbeben begünstigen könnten, darunter die Kompaktion von Sedimenten an der Subduktionsgrenzfläche und Dehydrationsreaktionen innerhalb der Platte. Dazu habe ich eine qualitative Analyse des Hydratationszustandes des Mantels unter Verwendung des Verhältnisses zwischen Kompressions- und Scherwellengeschwindigkeit (Vp/Vs-Verhältnis aus einemseismischen Tomographiemodell) durchgeführt. Die Ergebnisse dieser Analyse zeigen, dass der Großteil der Seismizität räumlich mit hydratisierten Bereichen in der subduzierten Platte und im darüber liegenden kontinentalen Mantel korreliert, mit Ausnahme eines Erdbebenclusters, das innerhalb des flachen Plattensegments auftritt. In diesem Bereich wechselt die subduzierte Platte von einem flachen in einen steilen Subduktionswinkel und Erdbeben werden wahrscheinlich durch Biegevorgänge in der Platte ausgelöst. Auch die wichtigsten Variationen in den beobachteten tektonischen Mustern scheinen durch die thermomechanische Konfiguration der Lithosphäre beeinflusst zu sein. Die mechanisch starken Bereiche von Forearc und Foreland zeigen aufgrund ihrer Verformungsbeständigkeit geringere Verkürzungsraten als der relativ schwache Bereich des Orogens. Darüber hinaus bestätigen die in dieser Dissertation modellierten strukturellen und thermomechanischen Eigenschaften der Lithosphäre auch frühere Analysen geodynamischer Simulationen, denen zufolge der Deformationsstil im Orogen- und Vorlandbereich jeweils von Variationen in der Lithosphären- und Krustendicke, im Vorhandensein schwacher Sedimente und in der gravitativen potentiellen Energie kontrolliert wird. Eine Sonderstellung nimmt der nordöstliche Vorlandbereich der SZA ein, wo eine verstärkte Seismizität und eine das Deck-und Grundgebirge erfassende Deformation zu beobachten sind, obwohl die modellierte Krustenfestigkeit dort Werte übersteigt, die für die in diesem Gebiet anzunehmenden tektonischen Spannungen typisch wären. . Mechanismen zur Lokalisierung verstärkter Deformation in einem Gebiet beitragen können, das nach den vorliegenden Modellen einer tektonischen Verformung widerstehen sollte, sind: (i) erhöhte tektonische Kräfte durch ein steileres Abtauchen der Platte und (ii) Schwächezonen in der Kruste, die auf prä-andine Deformationsereignisse zurückgehen. Schließlich könnten die thermomechanischen Bedingungen in diesem Teil des Vorlands einchlüsselfaktor für die Erhaltung des flachen Subduktionswinkels in diesen Breiten der SZA sein. KW - Andes KW - Anden KW - subduction KW - Subduktion KW - lithosphere KW - Lithosphäre KW - earthquakes KW - Erdbeben KW - modelling KW - Modellierung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549275 ER - TY - THES A1 - Schellbach, Konrad T1 - Erdbeben in der Geschichtsschreibung des Früh- und Hochmittelalters BT - Ursprung, Verständnis und Anwendung einer spezifisch mittelalterlichen Traditionsbildung T2 - Historical catastrophe studies T2 - Historische Katastrophenforschung N2 - "Terrae motus factus est magnus". In diesen und ähnlichen Worten erinnern mittelalterliche Geschichtsschreiber stets an das verspürte Eintreten von Erdbeben. Für die ereignisgeschichtliche Rekonstruktion der historischen Seismizität besitzt das Verständnis, dieser seit dem Frühmittelalter zunehmend standardisiert gebrauchten Narrativen, einen hohen Wert. Daher ist es wichtig, mit den bislang nahezu unerkannt geblieben Intentionen, Vorstellungsstrukturen und Argumentationsstrategien früh- und hochmittelalterlicher Geschichtsschreiber bekannt zu werden. Ausgehend von den antiken Ursprüngen ermittelt diese Arbeit die Bandbreite einer auf "terrae motus" aufbauenden, spezifisch mittelalterlichen Traditionsbildung und setzt sie in den Kontext zum Wissens- und Erfahrungshorizont früh- und hochmittelalterlicher Gelehrter. Erdbeben besaßen ein außerordentliches hermeneutisches Potential für das mittelalterliche Weltverständnis. Somit sind mittelalterliche Erdbebenbeschreibungen hinsichtlich ihrer deskriptiven Qualität und argumentativen Wertigkeit verschieden. Die Historiographie- und Ideengeschichte sowie die seismologische Parametrisierung von mittelalterlichen Erdbeben wird von diesem Wissen gleichermaßen profitieren. KW - Deutschland KW - Erdbeben KW - Geschichtsschreibung KW - Mediävistik KW - Theologie KW - Philosophie KW - Seismologie KW - Geophysik KW - Historische Seismologie KW - Katastrophenforschung Y1 - 2021 SN - 978-3-11-061998-0 SN - 978-3-11-062077-1 SN - 978-3-11-061982-9 U6 - https://doi.org/10.1515/9783110620771 SN - 2699-7231 SN - 2699-7223 PB - de Gruyter CY - Berlin ER - TY - THES A1 - Petersen, Gesa Maria T1 - Source studies of small earthquakes in the AlpArray: CMT inversion, seismo-tectonic analysis and methodological developments T1 - Herdmechanismen von kleinen Erdbeben im AlpArray: CMT-Inversion, seismotektonische Analyse und methodische Entwicklungen N2 - Centroid moment tensor inversion can provide insight into ongoing tectonic processes and active faults. In the Alpine mountains (central Europe), challenges result from low signal-to-noise ratios of earthquakes with small to moderate magnitudes and complex wave propagation effects through the heterogeneous crustal structure of the mountain belt. In this thesis, I make use of the temporary installation of the dense AlpArray seismic network (AASN) to establish a work flow to study seismic source processes and enhance the knowledge of the Alpine seismicity. The cumulative thesis comprises four publications on the topics of large seismic networks, seismic source processes in the Alps, their link to tectonics and stress field, and the inclusion of small magnitude earthquakes into studies of active faults. Dealing with hundreds of stations of the dense AASN requires the automated assessment of data and metadata quality. I developed the open source toolbox AutoStatsQ to perform an automated data quality control. Its first application to the AlpArray seismic network has revealed significant errors of amplitude gains and sensor orientations. A second application of the orientation test to the Turkish KOERI network, based on Rayleigh wave polarization, further illustrated the potential in comparison to a P wave polarization method. Taking advantage of the gain and orientation results of the AASN, I tested different inversion settings and input data types to approach the specific challenges of centroid moment tensor (CMT) inversions in the Alps. A comparative study was carried out to define the best fitting procedures. The application to 4 years of seismicity in the Alps (2016-2019) substantially enhanced the amount of moment tensor solutions in the region. We provide a list of moment tensors solutions down to magnitude Mw 3.1. Spatial patterns of typical focal mechanisms were analyzed in the seismotectonic context, by comparing them to long-term seismicity, historical earthquakes and observations of strain rates. Additionally, we use our MT solutions to investigate stress regimes and orientations along the Alpine chain. Finally, I addressed the challenge of including smaller magnitude events into the study of active faults and source processes. The open-source toolbox Clusty was developed for the clustering of earthquakes based on waveforms recorded across a network of seismic stations. The similarity of waveforms reflects both, the location and the similarity of source mechanisms. Therefore the clustering bears the opportunity to identify earthquakes of similar faulting styles, even when centroid moment tensor inversion is not possible due to low signal-to-noise ratios of surface waves or oversimplified velocity models. The toolbox is described through an application to the Zakynthos 2018 aftershock sequence and I subsequently discuss its potential application to weak earthquakes (Mw<3.1) in the Alps. N2 - Die Erforschung der Bruchmechanismen von Erdbeben in den Alpen bietet Einblicke in aktuelle tektonische Prozesse. Typischerweise niedrige bis mittlere Erdbebenmagnituden und die heterogene Krustenstruktur des alpinischen Gebirges erschweren die zu dieser Erforschung durchgeführten Momententensorinversionen. In dieser Dissertation stelle ich einen Arbeitsablauf vor, mit dem ich die Bruchprozesse von Erdbeben zwischen 2016 und 2019 studiert habe. Datengrundlage bildet dabei das temporäre AlpArray Netzwerk (AASN - AlpArray seismic network). Die kumulative Dissertation besteht aus vier Publikationen, die sich einerseits mit den Möglichkeiten und Herausforderungen von großen seismischen Netzwerken und andererseits mit der Erforschung der Bruchprozesse beschäftigen. Dabei wird sowohl auf die Verbindung von den Herdmechanismen und anderen Informationen wie Seismizität, Tektonik und Spannungsfeld eingegangen, als auch untersucht, wie kleinere Erdbeben unser Wissen erweitern können. Die Nutzung der großen Anzahl von Sensoren des AASN erfordert eine sorgfältige Kontrolle von Wellenformdaten und Stations-Metadaten. Um diese aufwändige Aufgabe weitmöglichst zu automatisieren, habe ich die open source toolbox AutoStatsQ entwickelt. Die Verwendung von AutoStatsQ zur Überprüfung des AASN zeigte mehrere signifikante Fehler in den Wellenform-Amplituden und in den Orientierungen der Horizontalkomponenten der Sensoren. Bei einer zweiten Anwendung des Orientierungstests von AutoStatsQ auf das türkische KOERI Netzwerk zeigten sich ebenfalls zahlreiche fehlerhaft orientierte Sensoren. Ein Vergleich mit einer zweiten Methode, basierend auf P-Wellen anstatt von Rayleigh-Wellen, zeigt weitestgehend übereinstimmende Ergebnisse. Basierend auf der Datenqualitätsstudie des AASN werden in der dritten Publikation systematisch verschiedene Einstellungen (z.B. Frequenzbänder, Datentypen, Azimuthale Abdeckung) für Momententensorinversionen getestet und vergleichen. Anschließend wurden Bruchprozesse von Erdbeben zwischen 2016 und 2019 mit Magnituden ab Mw 3.1 analysiert. Zur Interpretation der Ergebnisse im seismotektonischen Zusammenhang werden zusätzlich ältere Momententensorlösungen, Seismizitätskataloge ab 1970, historische Erdbeben und Deformation basierend auf Satellitendaten betrachtet. Aufgrund des Signal-Rausch-Verhältnisses von Oberflächenwellen müssten im Falle von Erdbeben mit kleineren Magnituden (Mw<3.1) höherfrequentere Raumwellen genutzt werden. Je höher der Frequenzbereich, desto größer sind die Einflüsse von Heterogenitäten entlang der Laufwege, sodass einfache 1-D Geschwindigkeitsmodelle nicht ausreichen. Um trotzdem kleinere Erdbeben in die Studien von aktiven Störungen einzubeziehen, haben wir die open-source toolbox Clusty entwickelt. Diese nutzt die Ähnlichkeit von Wellenformen in einem seismischen Netzwerk, um Erdbeben zu gruppieren. Die Ähnlichkeit von Wellenformen zweier Erdbeben über ein Netzwerk resultiert dabei sowohl aus der Ähnlichkeit der Herdmechanismen als auch aus der Lokation der Beben. Der Ketten-ähnliche clustering Ansatz ermöglicht es dabei, graduelle Wellenform-Unterschiede aufgrund von Lokationsänderungen entlang einer Störungszone zu berücksichtigen. Das clustering bietet folglich die Möglichkeit, Beben mit ähnlichen Herdmechanismen zu identifizieren und somit Störungszonen nachzuzeichnen. Die toolbox wird in der vierten Publikation anhand einer Anwendung auf die Nachbebensequenz des Zakynthos Bebens von 2018 beschrieben. Anschließend daran diskutiere ich, wie eine Anwendung auf die Alpen unsere Studien der Bruchprozesse und aktiven Störungen erweitern kann. KW - Moment tensor inversion KW - AlpArray KW - Alps KW - Earthquakes KW - Erdbeben KW - Momententensorinversion KW - Alpen KW - AlpArray Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525635 ER - TY - THES A1 - Liu, Qi T1 - Influence of CO2 degassing on microbial community distribution and activity in the Hartoušov degassing system, western Eger Rift (Czech Republic) N2 - The Cheb Basin (CZ) is a shallow Neogene intracontinental basin located in the western Eger Rift. The Cheb Basin is characterized by active seismicity and diffuse degassing of mantle-derived CO2 in mofette fields. Within the Cheb Basin, the Hartoušov mofette field shows a daily CO2 flux of 23–97 tons. More than 99% of CO2 released over an area of 0.35 km2. Seismic active periods have been observed in 2000 and 2014 in the Hartoušov mofette field. Due to the active geodynamic processes, the Cheb Basin is considered to be an ideal region for the continental deep biosphere research focussing on the interaction of biological processes with geological processes. To study the influence of CO2 degassing on microbial community in the surface and subsurface environments, two 3-m shallow drillings and a 108.5-m deep scientific drilling were conducted in 2015 and 2016 respectively. Additionally, the fluid retrieved from the deep drilling borehole was also recovered. The different ecosystems were compared regarding their geochemical properties, microbial abundances, and microbial community structures. The geochemistry of the mofette is characterized by low pH, high TOC, and sulfate contents while the subsurface environment shows a neutral pH, and various TOC and sulfate contents in different lithological settings. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and high saline groundwater on microbial processes. In general, the microorganisms had low abundance in the deep subsurface sediment compared with the shallow mofette. However, within the mofette and the deep subsurface sediment, the abundance of microbes does not show a typical decrease with depth, indicating that the uprising CO2-rich groundwater has a strong influence on the microbial communities via providing sufficient substrate for anaerobic chemolithoautotrophic microorganisms. Illumina MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences the microbial community composition in the mofette, while the subsurface microbial community is significantly influenced by the groundwater which motivated by the degassing CO2. Acidophilic microorganisms show a much higher relative abundance in the mofette. Meanwhile, the OTUs assigned to family Comamonadaceae are the dominant taxa which characterize the subsurface communities. Additionally, taxa involved in sulfur cycling characterizing the microbial communities in both mofette and CO2 dominated subsurface environments. Another investigated important geo–bio interaction is the influence of the seismic activity. During seismic events, released H2 may serve as the electron donor for microbial hydrogenotrophic processes, such as methanogenesis. To determine whether the seismic events can potentially trigger methanogenesis by the elevated geogenic H2 concentration, we performed laboratory simulation experiments with sediments retrieved from the drillings. The simulation results indicate that after the addition of hydrogen, substantial amounts of methane were produced in incubated mofette sediments and deep subsurface sediments. The methanogenic hydrogenotrophic genera Methanobacterium was highly enriched during the incubation. The modeling of the in-situ observation of the earthquake swarm period in 2000 at the Novy Kostel focal area/Czech Republic and our laboratory simulation experiments reveals a close relation between seismic activities and microbial methane production via earthquake-induced H2 release. We thus conclude that H2 – which is released during seismic activity – can potentially trigger methanogenic activity in the deep subsurface. Based on this conclusion, we further hypothesize that the hydrogenotrophic early life on Earth was boosted by the Late Heavy Bombardment induced seismic activity in approximately 4.2 to 3.8 Ga. N2 - Das Eger-Becken (CZ) ist ein flaches, intrakontinentales neogenes Becken im westlichen Eger-Graben. Das Eger-Becken zeichnet sich durch aktive Seismizität und die diffuse Entgasung von aus dem Mantel stammenden CO2 in Mofettenfeldern aus. Das Mofettenfeld von Hartoušov weist einen täglichen CO2-Fluss von 23-97 Tonnen auf. Mehr als 99% des CO2 werden auf einer Fläche von 0,35 km2 freigesetzt. Im Untersuchungsgebiet wurden in den Jahren 2000 und 2014 seismisch aktive Perioden beobachtet. Aufgrund der aktiven geodynamischen Prozesse gilt das Egerer Becken als ideale Region für die kontinentale Tiefenbiosphärenforschung, die sich auf die Wechselwirkung von biologischen Prozessen mit geologischen Prozessen konzentriert. Zur Untersuchung des Einflusses der CO2-Entgasung auf die mikrobielle Gemeinschaft in der ober- und unterirdischen Umwelt wurden 2015 und 2016 zwei 3 m tiefe Flachbohrungen und eine 108,5 m tiefe wissenschaftliche Bohrung durchgeführt. Zusätzlich wurde auch aus dem Tiefbohrloch Flüssigkeit gewonnen. Die verschiedenen Ökosysteme wurden hinsichtlich ihrer geochemischen Eigenschaften, der mikrobiellen Abundanzen und der mikrobiellen Gemeinschaftsstrukturen verglichen. Die Geochemie der Mofetten zeichnet sich durch einen niedrigen pH-Wert und hohe TOC- und Sulfatgehalte aus, während das unterirdische Milieu einen neutralen pH-Wert und verschiedene TOC- und Sulfatgehalte in unterschiedlichen lithologischen Umgebungen aufweist. Auffällige Unterschiede in der mikrobiellen Gemeinschaft unterstreichen den erheblichen Einfluss erhöhter CO2-Konzentrationen und stark salzhaltigen Grundwassers auf mikrobielle Prozesse. Generell waren die mikrobiellen Abundanzen in dem tiefen Untergrundsediment im Vergleich zur flachen Mofette gering. Innerhalb der Mofette und des tiefen unterirdischen Sediments zeigt die Häufigkeit der Mikroorganismen jedoch keine typische Abnahme mit der Tiefe, was darauf hinweist, dass das aufsteigende CO2-reiche Grundwasser einen starken Einfluss auf die mikrobiellen Gemeinschaften hat, indem es genügend Substrat für anaerobe chemolithoautotrophe Mikroorganismen bietet. Die Illumina-MiSeq-Sequenzierung der 16S rRNA-Gene und die multivariate Statistik zeigen, dass der pH-Wert die Zusammensetzung der mikrobiellen Gemeinschaft in der Mofette signifikant bestimmt, während die unterirdische mikrobielle Gemeinschaft signifikant vom Grundwasser beeinflusst wird, das durch das ausgasende CO2 geprägt ist. Azidophile Mikroorganismen zeigen eine viel höhere relative Abundanz in der Mofette, wohingegen die der Familie Comamonadaceae zugeordneten OTUs die dominierenden Taxa der unterirdischen Gemeinschaften darstellen. Zusätzlich charakterisieren Taxa, die am Schwefelzyklus beteiligt sind, die mikrobiellen Gemeinschaften sowohl in der Mofette als auch in der CO2-dominierten unterirdischen Umwelt. Eine weitere wichtige Untersuchung der Geo-Bio-Interaktion ist der Einfluss der seismischen Aktivität. Während seismischer Ereignisse kann freigesetztes H2 als Elektronendonator für mikrobielle hydrogenotrophe Prozesse, wie z.B. die Methanogenese, dienen. Um zu bestimmen, ob die seismischen Ereignisse durch die erhöhten geogenen H2-Konzentrationen möglicherweise methanogene Prozesse auslösen können, führten wir Laborsimulationsexperimente mit Sedimenten durch, die aus den Bohrungen gewonnen wurden. Die Simulationsexperimente weisen darauf hin, dass nach der Zugabe von Wasserstoff beträchtliche Mengen an Methan in inkubierten Mofettensedimenten und tiefen unterirdischen Sedimenten produziert wurden. Die methanogene hydrogenotrophe Gattung Methanobacterium wurde während der Inkubation stark angereichert. Die Modellierung der in-situ-Beobachtung der Erdbeben-Schwarmzeit im Jahr 2000 im Schwerpunktgebiet Novy Kostel/Tschechische Republik und unsere Laborsimulationsexperimente zeigen einen engen Zusammenhang zwischen seismischen Aktivitäten und der biotischen Methanproduktion durch erdbebeninduzierte H2-Freisetzung. Wir kommen daher zu dem Schluss, dass H2 - dass bei seismischer Aktivität freigesetzt wird - möglicherweise methanogene Aktivität im tiefen Untergrund auslösen kann. Basierend auf dieser Schlussfolgerung gehen wir weiter davon aus, dass das frühe hydrogenotrophe Leben, durch die durch Late Heavy Bombardment induzierte seismische Aktivität in etwa 4,2 bis 3,8 Ga verstärkt wurde. T2 - Einfluss der CO2-Entgasung auf die Verteilung und Aktivität der mikrobiellen Gemeinschaft im Hartoušov-Entgasungssystem im westlichen Eger-Graben (Tschechische Republik) KW - CO2 degassing KW - western Eger Rift KW - microbial community KW - microbial activity KW - earthquake KW - seismic activity KW - deep biosphere KW - CO2-Entgasung KW - tiefe Biosphäre KW - Erdbeben KW - mikrobielle Aktivität KW - mikrobielle Gemeinschaft KW - seismische Aktivität KW - westlichen Eger-Graben Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475341 ER - TY - THES A1 - Lehmann, Lukas T1 - Performance Test von Phasenpickern T1 - Performance test of phase pickers N2 - Die genauen Einsatzzeiten seismischer P-Phasen von Erdbeben werden in SeisComP3 und anderen Auswerteprogrammen standardmäßig und in Echtzeit automatisch bestimmt. S-Phasen stellen dagegen eine weit größere Herausforderung dar. Nur mit genauen Picks der P- bzw. S-Phasen können die Erdbebenlokationen korrekt und stabil bestimmt werden. Darum besteht erhebliches Interesse, diese mit hoher Genauigkeit zu bestimmen. Das Ziel der vorliegenden Bachelorarbeit war es, vier verschiedene, bereits vorhandene S-Phasenpicker auf ausgewählte Parameter optimal zu konfigurieren, auf Testdaten anzuwenden und deren Leistungsfähigkeit objektiv zu bewerten. Dazu wurden ein S-Picker (S-L2) aus dem OpenSource SeisComp3-Programmpaket, zwei S-Picker (S-AIC, S-AIC-V) als kommerzielles Modul der Firma gempa GmbH für SeisComP3 und ein S-Picker (Frequenzband) aus dem OpenSource PhasePaPy-Paket ausgewählt. Die Bewertung erfolgte durch Vergleich automatischer Picks mit manuell bestimmten Einsatzzeiten. Alle vier Picker wurden separat konfiguriert und auf drei verschiedene Datensätze von Erdbeben in N-Chile und im Vogtland, Deutschland, angewandt. Dazu wurden regional bzw. lokal typische Erdbeben zufällig ausgewählt und die P- und S-Phasen manuell bestimmt. Mit den zu testenden S-Pickeralgorithmen wurden dieselben Daten durchsucht und die Picks automatisch bestimmt. Die Konfigurationen der Picker wurden gleichzeitig automatisch und objektiv durch iterative Anpassung optimiert. Ein neu erstelltes Bewertungssystem vergleicht die manuellen und die automatisch gefundenen S-Picks anhand von definierten Qualitätsfaktoren. Die Qualitätsfaktoren sind: der Mittelwert und die Standardabweichung der zeitlichen Differenzen zwischen den S-Picks, die Anzahl an übereinstimmenden S-Picks, die Prozentangaben über mögliche S-Picks und die benötigt Rechenzeit. Die objektive Bewertung erfolgte anhand eines Scores. Der Scorewert ergibt sich aus der gewichteten Summe folgender normierter Qualitätsfaktoren: Standardabweichung (20%), Mittelwert (20%) und Prozentangabe über mögliche S-Picks (60%). Konfigurationen mit hohem Score werden bevorzugt. Die bevorzugten Konfigurationen der verschiedenen Picker wurden miteinander verglichen, um den am besten geeigneten S-Pickeralgorithmus zu bestimmen. Allgemein zeigt sich, dass der S-AIC Picker für jeden der drei Datensätze die höchsten Scores und damit die besten Ergebnisse liefert. Dabei wurde für jeden Datensatz ein andere Konfiguration der Parameter des S-AIC Pickers als die am besten geeignete bezeichnet. Daher ist für jede Erdbebenregion eine andere Konfigurationen erforderlich, um optimale Ergebnisse mit diesem S-Picker zu bekommen. N2 - The exact onset times of seismic P phases are automatically determined in analysis programs like SeisComP3 by default and in real-time. However the S phases are more challenging. To get an exact and stable result for earthquake location determination both, the P and the S phases, have to be picked accurate. The aim of this bachelor thesis was to optimize four different existing S phase pickers for different parameters, to apply these to data and to evaluate the results objectively. The chosen pickers were one S picker (S-L2) from the OpenSource SeisComp3 program package, two S pickers (S-AIC, S-AIC-V) as commercial module of the company gempa GmbH for SeisComp3 and one S picker (Frequency Band) from the OpenSource PhasePaPy package. The evaluation was based on the comparison between automatic and manually determined onset times. All those four pickers were configured separately and applied to three different records of earthquakes from northern Chile and Vogtland, Germany. The data sets consist of regional and/or local typical randomly chosen earthquakes for which both P and S phases were manually picked. The tested S pick algorithms determined the automatic picks for the exact same records. A newly created evaluation system compares the manual and the automatic S picks for predefined quality factors. These factors are: the mean and the standard deviation of the pick time differences, the number of corresponding S picks, the rates of possible S picks and the needed calculation time. The objectively rating was based on a score value. This value is calculated by a weighted sum of the following normalized quality factors: standard deviation (20%), mean (20%) and the rate of possible S picks (60%). The higher the score the better the configuration. The best configurations of the tested S pickers were compared to find the best algorithm, dataset wise. In general it is shown that the S-AIC picker has for each data set the highest score value and as a result it is named the best picker algorithm. But for each data set the picker has a different set of parameters which were determined as the best ones. For that reason there is a need to change the configuration for every earthquake location and field of application to find the best results with the S-AIC picker algorithm. KW - Geophysik KW - Seismologie KW - Erdbeben KW - Phasenpicker KW - S-Phase KW - SeisComP3 KW - PhasePaPy KW - geophysics KW - seismology KW - earthquake KW - phasepicker KW - S Phase KW - SeisComP3 KW - PhasePaPy KW - Picker KW - picker KW - Einsatzzeiten KW - onset times Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401993 ER - TY - THES A1 - Marc, Odin T1 - Earthquake-induced landsliding T1 - Erdbeben induzierten Hangrutschungen BT - earthquakes as erosional agents across timescales BT - Erdbeben als Erosions-Agenten über Zeitskalen N2 - Earthquakes deform Earth's surface, building long-lasting topographic features and contributing to landscape and mountain formation. However, seismic waves produced by earthquakes may also destabilize hillslopes, leading to large amounts of soil and bedrock moving downslope. Moreover, static deformation and shaking are suspected to damage the surface bedrock and therefore alter its future properties, affecting hydrological and erosional dynamics. Thus, earthquakes participate both in mountain building and stimulate directly or indirectly their erosion. Moreover, the impact of earthquakes on hillslopes has important implications for the amount of sediment and organic matter delivered to rivers, and ultimately to oceans, during episodic catastrophic seismic crises, the magnitude of life and property losses associated with landsliding, the perturbation and recovery of landscape properties after shaking, and the long term topographic evolution of mountain belts. Several of these aspects have been addressed recently through individual case studies but additional data compilation as well as theoretical or numerical modelling are required to tackle these issues in a more systematic and rigorous manner. This dissertation combines data compilation of earthquake characteristics, landslide mapping, and seismological data interpretation with physically-based modeling in order to address how earthquakes impact on erosional processes and landscape evolution. Over short time scales (10-100 s) and intermediate length scales (10 km), I have attempted to improve our understanding and ability to predict the amount of landslide debris triggered by seismic shaking in epicentral areas. Over long time scales (1-100 ky) and across a mountain belt (100 km) I have modeled the competition between erosional unloading and building of topography associated with earthquakes. Finally, over intermediate time scales (1-10 y) and at the hillslope scale (0.1-1 km) I have collected geomorphological and seismological data that highlight persistent effects of earthquakes on landscape properties and behaviour. First, I compiled a database on earthquakes that produced significant landsliding, including an estimate of the total landslide volume and area, and earthquake characteristics such as seismic moment and source depth. A key issue is the accurate conversion of landslide maps into volume estimates. Therefore I also estimated how amalgamation - when mapping errors lead to the bundling of multiple landslide into a single polygon - affects volume estimates from various earthquake-induced landslide inventories and developed an algorithm to automatically detect this artifact. The database was used to test a physically-based prediction of the total landslide area and volume caused by earthquakes, based on seismological scaling relationships and a statistical description of the landscape properties. The model outperforms empirical fits in accuracy, with 25 out of 40 cases well predicted, and allows interpretation of many outliers in physical terms. Apart from seismological complexities neglected by the model I found that exceptional rock strength properties or antecedent conditions may explain most outliers. Second, I assessed the geomorphic effects of large earthquakes on landscape dynamics by surveying the temporal evolution of precipitation-normalized landslide rate. I found strongly elevated landslide rates following earthquakes that progressively recover over 1 to 4 years, indicating that regolith strength drops and recovers. The relaxation is clearly non-linear for at least one case, and does not seem to correlate with coseismic landslide reactivation, water table level increase or tree root-system recovery. I suggested that shallow bedrock is damaged by the earthquake and then heals on annual timescales. Such variations in ground strength must be translated into shallow subsurface seismic velocities that are increasingly surveyed with ambient seismic noise correlations. With seismic noise autocorrelation I computed the seismic velocity in the epicentral areas of three earthquakes where I constrained a change in landslide rate. We found similar recovery dynamics and timescales, suggesting that seismic noise correlation techniques could be further developed to meaningfully assess ground strength variations for landscape dynamics. These two measurements are also in good agreement with the temporal dynamics of post-seismic surface displacement measured by GPS. This correlation suggests that the surface healing mechanism may be driven by tectonic deformation, and that the surface regolith and fractured bedrock may behave as a granular media that slowly compacts as it is sheared or vibrated. Last, I compared our model of earthquake-induced landsliding with a standard formulation of surface deformation caused by earthquakes to understand which parameters govern the competition between the building and destruction of topography caused by earthquakes. In contrast with previous studies I found that very large (Mw>8) earthquakes always increase the average topography, whereas only intermediate (Mw ~ 7) earthquakes in steep landscapes may reduce topography. Moreover, I illustrated how the net effect of earthquakes varies with depth or landscape steepness implying a complex and ambivalent role through the life of a mountain belt. Further I showed that faults producing a Gutenberg-Richter distribution of earthquake sizes, will limit topography over a larger range of fault sizes than faults producing repeated earthquakes with a characteristic size. N2 - Erdbeben gestalten die Erdoberfläche, sie tragen langfristig zum Aufbau von Topografie sowie zur Landschafts- und Gebirgsbildung bei. Die von Erdbeben erzeugten seismischen Erschütterungen können Gebirge jedoch auch destabilisieren und grosse Mengen an Boden sowie Grundgestein zum Abrutschen bringen und zerrüten. Erdbeben wirken daher sowohl auf die Gebirgsbildung als auch auf ihre Denudation. Ein detailliertes Verständnis der Auswirkungen von Erdbeben auf Hangstabilität ist eine wichtige Voraussetzung um die Zusammenhänge mit anderen Prozesse besser nachzuvollziehen: der kurzfristige Transport von Sedimenten und organischem Material in Flüsse und ihre Ablagerung bis in die Ozeane; der Verlust von Leben und Infrastruktur durch Hangrutschungen verbunden mit episodischen, katastrophalen, seismischen Ereignissen; die Störung und Wiederherstellung von Landschaftseigenschaften nach Erdbeben; sowie die langfristigen topographischen Entwicklung von ganzen Gebirgsketten. Einige dieser Forschungsfragen wurden kürzlich in einzelnen Fallstudien betrachtet aber zusätzliche Datenerfassung, theoretische und numerische Modellierung sind erforderlich, um diese Prozesse detaillierter zu erfassen. In dieser Dissertation werden Daten zu Eigenschaften der Erdbeben sowie aus Hangrutsch kartierungen und die Interpretation seismologischer Daten mit physikalischer Modellierung kombiniert, um die folgende übergreifende Frage zu beantworten: Wie beeinflussen Erdbeben die Erosionsprozesse in der Landschaftsentwicklung? Auf einer kurzen Zeitskala (10-100 s) und einer mittleren räumlichen Skala (10 km), habe ich versucht sowohl unser Prozessverständnis zu vertiefen als auch Vorhersagen über das gesamte Volumen der Rutschungen welche durch seismische Beben in der unmittelbaren Umgebung von Epizentren ausgelöst wurden, zu treffen und zu verbessern Auf einer langen Zeitskala (1-100 ky) und über einen Gebirgsgürtel (100 km) habe ich die durch Erdbeben ausgelösten konkurrierenden Prozesse von Abflachung von Topografie durch Erosion und den Aufbau von Topografie durch Hebung, modelliert. Auf einer mittleren Zeitskala (1-10 Jahre) und einer relativ kleinen Hangskala (0,1-1 km) habe ich geomorphologische und seismologische Daten erhoben, welche die anhaltenden Auswirkungen von Erdbeben auf Landschaftseigenschaften und deren Dynamic hervorheben. Zuerst habe ich eine Datenbank von Erdbeben erstellt, welche erhebliche Hangrutschungen ausgelöst hatten, einschliesslich einer Schätzung des gesamten Hangrutschungsvolumens und der Erdbebencharakteristiken wie z.B. seismischer Moment und Lage des Hypozentrums. Ich habe auch beurteilt, wie die Kartierung von Erdrutschen die Abschätzungen des Gesamtvolumens fehlerhaft beeinflussen können und präsentiere einen Algorithmus, um solche Fehler automatisch zu erkennen. Diese Datenbank wurde verwendet, um eine physisch-basierte Vorhersage der durch Erdbeben verursachten gesamten Hangrutschungsflächen und Volumen zu testen, welche auf seismologischen Skalierungsbeziehungen und auf einer statistischen Beschreibung der Landschaftseigenschaften basiert. Zweitens untersuchte ich den Einfluss von starken Erdbeben auf die Landschaftsdynamik durch das Vermessen der temporalen Entwicklung der Suszeptibilität von Hangrutschungen. Ich habe gezeigt, dass die stark erhöhte Hangrutschrate nach dem Erdbeben schrittweise nach einigen Jahren zurückging. Diesen Rückgang über die Zeit interpretiere ich als die Zerrüttung von oberflächennahem Gestein durch das Erdbeben und die Heilung der dadurch entstandenen Risse über der Zeit. Meine Daten deuten darauf hin, dass die Zerrüttungen und die anschliessende Heilung des Festgesteins in dem epizentralen Gebieten mit ambienten, seismischen Hintergrundrauschen überwacht werden kann. Möglicherweise wird die Heilung zusätzlich durch andauernde post-seismische Deformation angetrieben. Am Ende der Arbeit vergleiche ich meine entwickelten Modelle von erdbebenbedingten Hangrutschungen mit einer Standardformel für erdbebenverursachte Oberflächendeformierung. Mit diesem Vergleich zeige ich welche Parameter den Wettstreit zwischen der Hebung von Topografie und der gleichzeitigen Zerstörung von Topografie durch Erdbeben bestimmen. Ich zeige, dass nur mittlere - Mw ~ 7 - Erdbeben die Topografie reduzieren können im Gegensatz zu stärkeren - Mw > 8 - Beben die immer einen effektive Bildung von Topografie verursachen. Meine Ergebnisse zeigen die komplexen Zusammenhänge von Erdbeben in der Gebirgsbildung. KW - earthquake KW - landslide KW - erosion KW - Erdbeben KW - Erdrutsch KW - Erosion KW - topography KW - Topographie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96808 ER - TY - THES A1 - Jara Muñoz, Julius T1 - Quantifying forearc deformation patterns using coastal geomorphic markers T1 - Quantifizierung von Deformationsmustern mit Hilfe von Kustengeomorphologischen Markern BT - A comprehensive study of marine terraces along the 2010 Maule earthquake (M8.8) rupture zone N2 - Rapidly uplifting coastlines are frequently associated with convergent tectonic boundaries, like subduction zones, which are repeatedly breached by giant megathrust earthquakes. The coastal relief along tectonically active realms is shaped by the effect of sea-level variations and heterogeneous patterns of permanent tectonic deformation, which are accumulated through several cycles of megathrust earthquakes. However, the correlation between earthquake deformation patterns and the sustained long-term segmentation of forearcs, particularly in Chile, remains poorly understood. Furthermore, the methods used to estimate permanent deformation from geomorphic markers, like marine terraces, have remained qualitative and are based on unrepeatable methods. This contrasts with the increasing resolution of digital elevation models, such as Light Detection and Ranging (LiDAR) and high-resolution bathymetric surveys. Throughout this thesis I study permanent deformation in a holistic manner: from the methods to assess deformation rates, to the processes involved in its accumulation. My research focuses particularly on two aspects: Developing methodologies to assess permanent deformation using marine terraces, and comparing permanent deformation with seismic cycle deformation patterns under different spatial scales along the M8.8 Maule earthquake (2010) rupture zone. Two methods are developed to determine deformation rates from wave-built and wave-cut terraces respectively. I selected an archetypal example of a wave-built terrace at Santa Maria Island studying its stratigraphy and recognizing sequences of reoccupation events tied with eleven radiocarbon sample ages (14C ages). I developed a method to link patterns of reoccupation with sea-level proxies by iterating relative sea level curves for a range of uplift rates. I find the best fit between relative sea-level and the stratigraphic patterns for an uplift rate of 1.5 +- 0.3 m/ka. A Graphical User Interface named TerraceM® was developed in Matlab®. This novel software tool determines shoreline angles in wave-cut terraces under different geomorphic scenarios. To validate the methods, I select test sites in areas of available high-resolution LiDAR topography along the Maule earthquake rupture zone and in California, USA. The software allows determining the 3D location of the shoreline angle, which is a proxy for the estimation of permanent deformation rates. The method is based on linear interpolations to define the paleo platform and cliff on swath profiles. The shoreline angle is then located by intersecting these interpolations. The accuracy and precision of TerraceM® was tested by comparing its results with previous assessments, and through an experiment with students in a computer lab setting at the University of Potsdam. I combined the methods developed to analyze wave-built and wave-cut terraces to assess regional patterns of permanent deformation along the (2010) Maule earthquake rupture. Wave-built terraces are tied using 12 Infra Red Stimulated luminescence ages (IRSL ages) and shoreline angles in wave-cut terraces are estimated from 170 aligned swath profiles. The comparison of coseismic slip, interseismic coupling, and permanent deformation, leads to three areas of high permanent uplift, terrace warping, and sharp fault offsets. These three areas correlate with regions of high slip and low coupling, as well as with the spatial limit of at least eight historical megathrust ruptures (M8-9.5). I propose that the zones of upwarping at Arauco and Topocalma reflect changes in frictional properties of the megathrust, which result in discrete boundaries for the propagation of mega earthquakes. To explore the application of geomorphic markers and quantitative morphology in offshore areas I performed a local study of patterns of permanent deformation inferred from hitherto unrecognized drowned shorelines at the Arauco Bay, at the southern part of the (2010) Maule earthquake rupture zone. A multidisciplinary approach, including morphometry, sedimentology, paleontology, 3D morphoscopy, and a landscape Evolution Model is used to recognize, map, and assess local rates and patterns of permanent deformation in submarine environments. Permanent deformation patterns are then reproduced using elastic models to assess deformation rates of an active submarine splay fault defined as Santa Maria Fault System. The best fit suggests a reverse structure with a slip rate of 3.7 m/ka for the last 30 ka. The register of land level changes during the earthquake cycle at Santa Maria Island suggest that most of the deformation may be accrued through splay fault reactivation during mega earthquakes, like the (2010) Maule event. Considering a recurrence time of 150 to 200 years, as determined from historical and geological observations, slip between 0.3 and 0.7 m per event would be required to account for the 3.7 m/ka millennial slip rate. However, if the SMFS slips only every ~1000 years, representing a few megathrust earthquakes, then a slip of ~3.5 m per event would be required to account for the long- term rate. Such event would be equivalent to a magnitude ~6.7 earthquake capable to generate a local tsunami. The results of this thesis provide novel and fundamental information regarding the amount of permanent deformation accrued in the crust, and the mechanisms responsible for this accumulation at millennial time-scales along the M8.8 Maule earthquake (2010) rupture zone. Furthermore, the results of this thesis highlight the application of quantitative geomorphology and the use of repeatable methods to determine permanent deformation, improve the accuracy of marine terrace assessments, and estimates of vertical deformation rates in tectonically active coastal areas. This is vital information for adequate coastal-hazard assessments and to anticipate realistic earthquake and tsunami scenarios. N2 - Küstenregionen, die von schnellen Hebungsraten gekennzeichnet sind, werden häufig mit konvergierenden Plattengrenzen assoziiert, beispielsweise mit Subduktionszonen, die wiederholt von Mega-Erdbeben betroffen sind. Das Küstenrelief tektonisch aktiver Gebiete formt sich durch die Effekte von Meeresspiegelschwankungen und die heterogenen Muster der permanenten tektonischen Deformation, die im Zuge von mehreren Erdbebenzyklen entstand. Jedoch die Korrelation zwischen den Deformationsmustern von Erdbeben und der langfristig anhaltenden Segmentation der ‚Forearcs’ ist noch wenig erforscht, insbesondere in Chile. Darüber hinaus sind die Methoden zur Schätzung der permanenten Deformation geomorphologischer Marker, wie beispielsweise mariner Terrassen, lediglich qualitativ oder basieren nicht auf wiederholbaren Messungen. Dies steht im Kontrast zu der mittlerweile höheren Auflösung verfügbarer digitaler Geländemodelle, die z.B. mit LiDAR (Light Detection and Ranging) oder durch hochauflösende bathymetrische Studien gewonnen werden. Im Rahmen dieser Dissertation wird die permanente Deformation einer ganzheitlichen Betrachtung unterzogen, die von den zu Grunde liegenden Methoden zur Bestimmung der Deformationsraten bis hin zu den involvierten Prozessen bei deren Akkumulation reicht. Besonderes Augenmerk wird dabei auf zwei Aspekte gerichtet: Einerseits die Entwicklung von Methoden zur Messung permanenter Deformation anhand von marinen Terrassen, und andererseits der Vergleich zwischen permanenter Deformation und Deformationsmustern des seismischen Zyklus anhand unterschiedlicher räumlicher Ausmaße entlang der Bruchzone des M8.8 Maule (2010) Erdbebens entstanden. Es werden zwei Methoden zur Bestimmung der Deformationsraten von ’wave-built’ und ‘wave-cut’ Terrassen entwickelt. Ein archetypischer Beispiel einer ‘wave-built’ Terrasse wird auf der Insel Santa Maria untersucht. Durch die detaillierte Studie der Sedimentabfolge, werden wiederkehrende Ereignisse der Reaktivierung der Terrasse identifiziert, die anhand von Messungen an Kohlenstoffisotopen (C14- Datierung) von 11 Proben zeitlich eingegrenzt werden. Es wird eine Methode entwickelt, um solche Reaktivierungsmuster mit Meeresspiegelindikatoren in Verbindung zu bringen, wobei die relativen Meeresspiegelkurven mit einer Reihe von Hebungsraten korreliert werden. Die beste Korrelation zwischen Meeresspiegelschwankungen und dem stratigrafischen Muster wird unter Berücksichtigung einer Hebungsrate von 1.5 ± 0.3 m/ka erreicht. Unter Verwendung der Software Matlab® wird die grafische Benutzeroberfläche TerraceM® entwickelt. Diese neue Methode erlaubt die Bestimmung von Küstenwinkels in ‘wave-cut’ Terrassen in verschiedenen geomorphischen Szenarien. Zur Validierung der Methoden werden Regionen entlang der Bruchzone des Maule-Erdbebens und in Kalifornien ausgewählt, für die hochauflösende LiDAR-Daten der Topografie zur Verfügung stehen. Die Software ermöglicht es, den 3D Standort des Küstenwinkels zu bestimmen, der als Proxy für die Schätzung permanenter Deformationsraten fungiert. Dabei nutzt die Methode lineare Interpolation um die Paleo Plattform und die Klippen mit Swath Profilen zu definieren. Im Anschluss wird der Küstenwinkel durch die Überschneidung dieser Interpolationen lokalisiert. Die Genauigkeit und Robustheit von „TerraceM“ wird durch den Vergleich der Ergebnisse mit denen vorangegangener Untersuchungen überprüft. Um regionale Muster permanenter Deformationen entlang der (2010) Maule Bruchzone zu untersuchen werden die Methoden für die ‚wave-built’ und ‚wave-cut’ Terrassen kombiniert. ‘Wave-built’ Terrassen werden mittels 12 Infrarot-Optisch-Stimulierten Lumineszenz (IRSL) Proben datiert, während die Küstenwinkel der ‘wave-cut’ Terrassen anhand von 170 abgestimmten SWATH-Profilen geschätzt wurden. Durch den Vergleich von co-seismischem Versatz, interseismischer Kopplung und permanenter Deformation ergaben sich drei Gebiete mit hoher permanenter Erhebung, Terrassenkrümmung und abruptem, störungsbedingtem Versatz. Diese drei Gebiete korrelieren mit Regionen von hohem Versatz und niedriger Kopplung, sowie mit der räumlichen Begrenzung der Bruchzonen von mindestens acht historischen Mega-Erdbeben. Es wird argumentiert, dass die ansteigenden Zonen bei Arauco und Topocalma Änderungen der Reibungseigenschaften von Mega-Erdbeben widerspiegeln, was diskrete Grenzen für die Ausbreitung von Mega-Erdbeben zur Folge hat. Ein weiterer Beitrag dieser Dissertation ist die lokale Untersuchung permanenter Deformationsmuster von bislang unbekannten überflutete Küstenlinien in der Arauco-Bucht bei der Santa Maria Insel, die ebenfalls vom Maule Erdbeben betroffen wurde. Ein multidisziplinärer Ansatz wird verwendet, um lokale Muster permanenter Deformation in submarinen Umgebungen zu erkennen, abzubilden und zu untersuchen. Dabei kommen Morphometrie, Sedimentologie, Paläontologie, 3D Morphoskopie und ein Landschafts-Entwicklungs-Model zum Einsatz. Permanente Deformationsmuster werden anhand eines elastischen Models nachgebildet und bestimmen die Deformationsraten einer aktiven, submarinen Aussenstörung (‘splay fault’), die als Santa Maria Störungszone definiert wird und durch eine Versatzrate von 3.7 m/ka für die letzten 30 ka charakterisiert ist. Die Aufzeichnungen zu Veränderungen der Elevation der Erdoberfläche während des Santa Maria Erdbebenzyklus deuten darauf hin, dass der wesentliche Teil der Deformation auf die Reaktivierung einer ‘Splay Fault’ während Mega-Erdbeben (wie z.B. das Maule (2010) Erdbeben) zurückzuführen ist. Allerdings die Sismizität in geringer Tiefe, die während der letzten zehn Jahre vor dem Maule-Erdbeben registriert wurde, deutet auf vorübergehende Störungsaktivität in der interseismischen Phase hin. Die Ergebnisse dieser Dissertation liefern neuartige und fundamentale Daten bezüglich der Menge und Mechanismen der Akkumulierung permanenter Deformation in der Erdkruste über mehrere tausend Jahre hinweg in der Region des M8.8 Maule Erdbebens (2010). Die in dieser Dissertation präsentierten neuen Methoden zur Charakterisierung permanenter Deformation mithilfe von geomorpologischen Küstenmarkern bieten einen breiteren quantitativen Ansatz zur Interpretation aktiver Deformation dar und können somit zu einem besseren Verständnis der Geologie in tektonisch aktiven Küstengebieten beitragen. N2 - Las regiones costeras tectónicamente activas están generalmente asociadas con zonas de subducción, las cuales son recurrentemente afectadas por megaterremotos de gran magnitud. El relieve costero es modelado por el efecto combinado de variaciones eustáticas y patrones de alzamiento tectónico heterogéneos, los cuales son acumulados luego de varios ciclos de megaterremotos. Sin embargo, la correlación entre los patrones de deformación asociados a megaterremotos y la persistente segmentación de las zonas de antearco, especialmente en Chile, no han sido aún entendidos del todo. Por otra parte, los métodos normalmente usados para estimar deformación permanente y basados en marcadores geomorfológicos, como las terrazas marinas, han permanecido basados en aproximaciones cualitativas y no repetibles. Esta situación es contrastante con el rápido avance de modelos de elevación digital de alta resolución como Light Detection and Ranging (LiDAR) y batimetrías de última generación. A lo largo de esta tesis me enfoco en estudiar la deformación permanente desde un punto de vista holístico: Desde los métodos usados para medir deformación permanente, hasta el estudio de los procesos responsables de su acumulación en la corteza. Mi investigación se enfoca específicamente en dos aspectos: Desarrollar nuevos métodos para medir deformación permanente usando terrazas marinas y comparar la magnitud de la deformación permanente con diferentes escalas temporales de deformación registrada durante las distintas fases del ciclo sísmico a lo largo de la zona de ruptura del (M8.8) Terremoto Maule 2010. En esta tesis he desarrollado dos métodos para determinar tasas de deformación en terrazas marinas del tipo wave-built y wave-cut. Para el primero, me enfoco en estudiar un ejemplo arquetípico de terraza marina tipo wave-built en Isla Santa María, mapeando su estratigrafía en detalle y reconociendo patrones de eventos de reocupación datados mediante once edades de radiocarbono (14C). He desarrollado un método para vincular los patrones de reocupación con variaciones del nivel del mar mediante la iteración de curvas relativas del nivel del mar para un rango de tasas de alzamiento. El mejor ajuste entre nivel del mar relativo y los patrones estratigráficos señala una tasa de alzamiento de 1.5 ± 0.3 m/ka. El segundo método es un software de interfaz gráfica llamado TerraceM® y desarrollado usando Matlab®. Esta novedosa herramienta permite determinar el shoreline-angle en terrazas del tipo wave-cut para diferentes escenarios geomorfológicos. Para validar estos métodos he seleccionado zonas de prueba con disponibilidad de topografía LiDAR a lo largo de la zona de ruptura del Terremoto Maule (2010), en Chile, y en California, USA. TerraceM permite determinar la ubicación tridimensional del shoreline-angle, el cual es usado para calcular tasas de deformación permanente. El shoreline-angle es localizado mediante la intersección de interpolaciones lineales, las que son usadas para definir la paleo plataforma y el paleo acantilado en perfiles topográficos swath. La precisión y exactitud de las mediciones con TerraceM es testeada comprando los resultados con mapeos previos y mediante un experimento de respetabilidad con estudiantes en el laboratorio de computación de la Universidad de Potsdam. He combinado los métodos creados anteriormente, para analizar terrazas del tipo wave-cut y wave-built, con el objetivo de medir la deformación permanente acumulada a lo largo de la zona de ruptura del Terremoto Maule (2010). Las terrazas tipo wave-built fueron datadas usando doce edades de Luminiscencia Estimulada por Luz Infrarroja (IRSL), las terrazas wave-cut fueron estudiadas utilizando 170 perfiles swaths alineados. Mediante la comparación de deslizamiento co-sísmico, acople intersísmico y tasas de deformación permanente he detectado tres áreas de alto alzamiento tectónico, plegamiento de terrazas marinas y zonas desplazadas por fallas activas. Estas tres áreas coinciden con zonas de alto deslizamiento cosísmico y acople, y con el limite espacial de al menos ocho megaterremotos históricos (M8-9.5). Propongo que las zonas de plegamiento de terrazas marinas en Arauco y Topocalma reflejan cambios en fricción de la zona de interplaca, que da como resultado la formación de barreras discretas para la propagación de megaterremotos. Con el objetivo de explorar la aplicación de geomorfología cuantitativa y marcadores geomorfológicos en ambientes submarinos, he desarrollado un estudio local de para determinar tasas de alzamiento tectónico utilizando líneas de costa sumergidas en el Golfo de Arauco, en la parte sur de la zona de ruptura del Terremoto Maule (2010). Utilizo una metodología multidisciplinaria que incluye: morfometría, sedimentología, paleontología, morfoscopía 3D y un modelo de evolución del relieve, con el objetivo de reconocer, cartografiar, y medir tasas y patrones de deformación permanente en ambientes submarinos. Luego, se utilizó un modelo elástico para reproducir los patrones de deformación permanente de una falla ramificada (splay- fault) definida como Sistema de Falla Santa María. El mejor modelo sugiere una estructura inversa con una tasa de deslizamiento de 3.7 m/ka durante los últimos ~30 ka. El registro de cambios del nivel del terreno durante el ciclo sísmico en Isla Santa María sugiere que la mayor parte de la deformación es acumulada a través de la reactivación de fallas ramificadas durante megaterremotos como el Maule (2010). Si consideramos 150 a 200 años como tiempo de recurrencia de estos mega eventos, un deslizamiento de entre 0.3 y 0.7 metros por evento sería necesario para equilibrar la tasa de deslizamiento de 3.7 m/ka. Sin embargo, si la falla se deslizara cada ~1000 años, sugiriendo que solo algunos terremotos podrían reactivarla, un deslizamiento de ~3.5 metros por evento serían necesarios para equilibrar la tasa de deslizamiento. Tal evento sería equivalente a un terremoto magnitud ~6.7 que sería capaz de producir un tsunami local. Los resultados de esta tesis entregan información nueva y fundamental acerca de la cantidad de deformación permanente y los posibles mecanismos asociados a esta deformación a escala de miles de años a lo largo de la zona de ruptura del M8.8 Terremoto Maule (2010). Además, los resultados de esta tesis destacan la aplicación de métodos de geomorfología cuantitativa, incluyendo nuevas herramientas computacionales como TerraceM®, el cual ayudará a expandir el uso de la geomorfología cuantitativa y métodos repetibles, además de mejorar la precisión y exactitud de estimaciones de deformación permanente en zonas costeras. Esta información es imprescindible para una adecuada ponderación de riesgos geológicos en zonas costeras y para anticipar escenarios de terremotos y tsunamis realísticos. KW - marine terraces KW - geomorphology KW - earthquake KW - subduction zone KW - permanent deformation KW - shorelines KW - Erdbeben KW - Geomorphologie KW - marine Terrassen KW - permanente Verformung KW - Küstenlinien KW - Subduktionszone Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102652 ER - TY - THES A1 - Kieling, Katrin T1 - Quantification of ground motions by broadband simulations T1 - Quantifizierung von Bodenbewegung durch Breitband-Simulationen N2 - In many procedures of seismic risk mitigation, ground motion simulations are needed to test systems or improve their effectiveness. For example they may be used to estimate the level of ground shaking caused by future earthquakes. Good physical models for ground motion simulation are also thought to be important for hazard assessment, as they could close gaps in the existing datasets. Since the observed ground motion in nature shows a certain variability, part of which cannot be explained by macroscopic parameters such as magnitude or position of an earthquake, it would be desirable that a good physical model is not only able to produce one single seismogram, but also to reveal this natural variability. In this thesis, I develop a method to model realistic ground motions in a way that is computationally simple to handle, permitting multiple scenario simulations. I focus on two aspects of ground motion modelling. First, I use deterministic wave propagation for the whole frequency range – from static deformation to approximately 10 Hz – but account for source variability by implementing self-similar slip distributions and rough fault interfaces. Second, I scale the source spectrum so that the modelled waveforms represent the correct radiated seismic energy. With this scaling I verify whether the energy magnitude is suitable as an explanatory variable, which characterises the amount of energy radiated at high frequencies – the advantage of the energy magnitude being that it can be deduced from observations, even in real-time. Applications of the developed method for the 2008 Wenchuan (China) earthquake, the 2003 Tokachi-Oki (Japan) earthquake and the 1994 Northridge (California, USA) earthquake show that the fine source discretisations combined with the small scale source variability ensure that high frequencies are satisfactorily introduced, justifying the deterministic wave propagation approach even at high frequencies. I demonstrate that the energy magnitude can be used to calibrate the high-frequency content in ground motion simulations. Because deterministic wave propagation is applied to the whole frequency range, the simulation method permits the quantification of the variability in ground motion due to parametric uncertainties in the source description. A large number of scenario simulations for an M=6 earthquake show that the roughness of the source as well as the distribution of fault dislocations have a minor effect on the simulated variability by diminishing directivity effects, while hypocenter location and rupture velocity more strongly influence the variability. The uncertainty in energy magnitude, however, leads to the largest differences of ground motion amplitude between different events, resulting in a variability which is larger than the one observed. For the presented approach, this dissertation shows (i) the verification of the computational correctness of the code, (ii) the ability to reproduce observed ground motions and (iii) the validation of the simulated ground motion variability. Those three steps are essential to evaluate the suitability of the method for means of seismic risk mitigation. N2 - In vielen Verfahren zur Minimierung seismischen Risikos braucht man Seismogramme, um die Effektivität von Systemen zu testen oder diese zu verbessern. So können realistische Bodenbewegungen genutzt werden, um das Ausmaß der Erschütterungen durch zukünftige Erdbeben abzuschätzen. Gute physikalische Bodenbewegungsmodelle haben auch das Potential, Lücken in den beobachteten Datensätzen zu schließen und somit Gefährdungsabschätzungen zu verbessern. Da die in der Natur beobachtete Bodenbewegung einer gewissen Variabilität unterliegt, von der ein Teil nicht durch makroskopische Parameter wie Magnitude oder Position des Erdbebens erklärt werden kann, ist es wünschenswert, dass ein gutes physikalisches Modell nicht nur ein einzelnes Seismogramm produziert, sondern auch die natürliche Variabilität widerspiegelt. In dieser Arbeit beschreibe ich eine Methode zur Modellierung von realistischen Bodenbewegungen, die – aufgrund ihrer einfachen Modellkonfiguration – mehrere Szenario-Simulationen ermöglicht. Dabei konzentriere ich mich auf zwei Aspekte: Einerseits nutze ich ein deterministisches Verfahren für die Wellenausbreitung für den gesamten Frequenzbereich, von der statischen Deformation bis etwa 10 Hz, unter Berücksichtigung der Variabilität der Quelle durch die Einbeziehung von selbstähnlichen Slipverteilungen und rauen Störungsflächen. Andererseits skaliere ich das Quellspektrum so, dass die modellierte Wellenform die abgestrahlte seismische Ener-gie wiedergibt. Damit überprüfe ich, ob die Energie-Magnitude als Stellgröße geeignet ist, die den Anteil der Energie beschreibt, der im Hochfrequenzbereich abgestrahlt wird. Der Vorteil der Energie- Magnitude ist, dass diese aus Beobachtungen, sogar in sehr kurzer Zeit, ermittelt werden kann. Anwendungen der entwickelten Methode für das Wenchuan (China) Erdbeben von 2008, das Tokachi-Oki (Japan) Erdbeben von 2003 und das Northridge (Kalifornien, USA) Erdbeben von 1994 demonstrieren, dass durch eine feine Diskretisierung und kleinskalige Variabilität in der Quelle hohe Frequenzen ausreichend in die Wellenform eingeführt werden, was den deterministischen Ansatz auch im Hochfrequenzbereich bestätigt. Ich zeige, dass die Energie-Magnitude verwendet werden kann um den Hochfrequenzanteil in Bodenbewegungssimulationen zu kalibrieren. Da die determistische Wellenausbreitung auf den gesamten Frequenzbereich angewandt wird, können die Variabilitäten, die durch parametrische Unsicherheiten in der Quellbeschreibung entstehen, beziffert werden. Zahlreiche Simulationen für ein M=6 Beben zeigen, dass die Rauigkeit der Quelle und die Slipverteilung durch Minderung der Direktivitätseffekte die simulierte Variabilität der Bodenbewegung geringfügig verringern. Dagegen haben die Bruchgeschwindigkeit und die Lage des Hypozentrums einen stärkeren Einfluss auf die Variabilität. Die Unsicherheit in der Energie-Magnitude dagegen führt zu großen Unterschieden zwischen verschiedenen Erdbebensimulationen, welche größer sind als die beobachtete Variabilität von Bodenbewegungen. In Bezug auf die vorgestellte Methode zeigt diese Arbeit (i) den Nachweis der Richtigkeit des Computerprogramms, (ii) die Eignung zur Modellierung beobachteter Bodenbewegung und (iii) den Vergleich der simulierten Variabilität von Bodenbewegung mit der beobachteten. Dies sind die ersten drei Schritte auf dem Weg zur Nutzbarkeit von Bodenbewegungssimulationen in Maßnahmen zur Verminderung des seismischen Risikos. KW - ground motions KW - earthquake KW - simulation KW - seismic risk KW - ground motion variability KW - Bodenbewegung KW - Erdbeben KW - seismisches Risiko KW - Simulation KW - Variabilität von Bodenbewegung Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-85989 ER -