TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, Andre A1 - Merk, Virginia A1 - Stranik, Ondrej A1 - Fritzsche, Wolfgang A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold Nanolenses Self-Assembled by DNA Origami JF - ACS Photonics N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - plasmonics KW - DNA origami KW - SERS KW - nanolenses KW - gold nanoparticles Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 SP - 1123 EP - 1130 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Prinz, Julia A1 - Heck, Christian A1 - Ellerik, Lisa A1 - Merk, Virginia A1 - Bald, Ilko T1 - DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity N2 - DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 221 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89714 SP - 5612 EP - 5620 ER - TY - THES A1 - Prinz, Julia T1 - DNA origami substrates as a versatile tool for surface-enhanced Raman scattering (SERS) T1 - DNA Origami-Substrate als ein vielseitiges Werkzeug für die oberflächenverstärkte Raman-Streuung (SERS) N2 - Surface-enhanced Raman scattering (SERS) is a promising tool to obtain rich chemical information about analytes at trace levels. However, in order to perform selective experiments on individual molecules, two fundamental requirements have to be fulfilled. On the one hand, areas with high local field enhancement, so-called “hot spots”, have to be created by positioning the supporting metal surfaces in close proximity to each other. In most cases hot spots are formed in the gap between adjacent metal nanoparticles (NPs). On the other hand, the analyte has to be positioned directly in the hot spot in order to profit from the highest signal amplification. The use of DNA origami substrates provides both, the arrangement of AuNPs with nm precision as well as the ability to bind analyte molecules at predefined positions. Consequently, the present cumulative doctoral thesis aims at the development of a novel SERS substrate based on a DNA origami template. To this end, two DNA-functionalized gold nanoparticles (AuNPs) are attached to one DNA origami substrate resulting in the formation of a AuNP dimer and thus in a hot spot within the corresponding gap. The obtained structures are characterized by correlated atomic force microscopy (AFM) and SERS imaging which allows for the combination of structural and chemical information. Initially, the proof-of principle is presented which demonstrates the potential of the novel approach. It is shown that the Raman signal of 15 nm AuNPs coated with dye-modified DNA (dye: carboxytetramethylrhodamine (TAMRA)) is significantly higher for AuNP dimers arranged on a DNA origami platform in comparison to single AuNPs. Furthermore, by attaching single TAMRA molecules in the hot spot between two 5 nm AuNPs and optimizing the size of the AuNPs by electroless gold deposition, SERS experiments at the few-molecule level are presented. The initially used DNA origami-AuNPs design is further optimized in many respects. On the one hand, larger AuNPs up to a diameter of 60 nm are used which are additionally treated with a silver enhancement solution to obtain Au-Ag-core-shell NPs. On the other hand, the arrangement of both AuNPs is altered to improve the position of the dye molecule within the hot spot as well as to decrease the gap size between the two particles. With the optimized design the detection of single dye molecules (TAMRA and cyanine 3 (Cy3)) by means of SERS is demonstrated. Quantitatively, enhancement factors up to 10^10 are estimated which is sufficiently high to detect single dye molecules. In the second part, the influence of graphene as an additional component of the SERS substrate is investigated. Graphene is a two-dimensional material with an outstanding combination of electronical, mechanical and optical properties. Here, it is demonstrated that single layer graphene (SLG) replicates the shape of underlying non-modified DNA origami substrates very well, which enables the monitoring of structural alterations by AFM imaging. In this way, it is shown that graphene encapsulation significantly increases the structural stability of bare DNA origami substrates towards mechanical force and prolonged exposure to deionized water. Furthermore, SLG is used to cover DNA origami substrates which are functionalized with a 40 nm AuNP dimer. In this way, a novel kind of hybrid material is created which exhibits several advantages compared to the analogue non-covered SERS substrates. First, the fluorescence background of dye molecules that are located in between the AuNP surface and SLG is efficiently reduced. Second, the photobleaching rate of the incorporated dye molecules is decreased up to one order of magnitude. Third, due to the increased photostability of the investigated dye molecules, the performance of polarization-dependent series measurements on individual structures is enabled. This in turn reveals extensive information about the dye molecules in the hot spot as well as about the strain induced within the graphene lattice. Although SLG can significantly influence the SERS substrate in the aforementioned ways, all those effects are strongly related to the extent of contact with the underlying AuNP dimer. N2 - Desoxyribonukleinsäure (engl. deoxyribonucleic acid (DNA)) ist nicht nur Träger der Erbinformation, sondern wird auch seit den frühen 80er Jahren als Gerüstmaterial in der Nanotechnologie verwendet. Im Jahr 2006 wurde die bis dato entwickelte DNA-Nanotechnologie durch die Erfindung der sogenannten DNA Origami-Technik weiter revolutioniert. Diese erlaubt die Konstruktion vielfältiger zwei- und dreidimensionaler Strukturen durch gezielte DNA-Selbstassemblierung. Basierend auf der grundlegenden Watson-Crick Basenpaarung innerhalb eines DNA-Doppelstrangs können die gewünschten Zielstrukturen dabei mit hoher Genauigkeit vorhergesagt werden. Neben der Entwicklung vielfältiger DNA-Konstrukte eignen sich DNA Origami-Substrate zudem hervorragend zur Bindung funktionaler Einheiten mit der Präzision im Bereich von Nanometern. Somit lassen sich beispielsweise Goldnanopartikel (AuNPs) präzise anordnen. Dies ist von höchstem Interesse im Zusammenhang mit der oberflächenverstärkten Ramanstreuung (engl. surface-enhanced Raman scattering (SERS)). SERS basiert darauf, die naturgemäß schwache Ramanstreuung eines Analyten um mehrere Größenordnungen zu verstärken, indem der Analyt nahe einer Metalloberfläche positioniert wird. Die Verstärkung der Ramanstreuung beruht hierbei hauptsächlich auf der Wechselwirkung des Analyten mit dem elektromagnetischen Feld der Metalloberfläche und kann im Zwischenraum zweier benachbarter Metallstrukturen besonders stark ausgeprägt sein. Die vorliegende kumulative Dissertation beschäftigt sich mit der Entwicklung einer DNA Origami-basierten Sensoroberfläche für die Anwendung von SERS-Experimenten. Hierbei werden jeweils zwei AuNPs in gezieltem Abstand an ein DNA Origami-Substrat gebunden und das verstärkte Ramansignal eines Analyten im Zwischenraum des AuNP-Dimers detektiert. Zunächst wird das allgemeine Prinzip in Form eines Wirksamkeitsnachweises vorgestellt, in welchem der Farbstoff Carboxytetramethylrhodamin (TAMRA) als Analyt verwendet wird. Die darauf aufbauenden Experimente zielen auf eine Verringerung der Nachweisgrenze bis hin zur Einzelmoleküldetektion ab. Im Zuge dessen werden vielseitige Optimierungsschritte durchgeführt, die die Größe, die Anordnung sowie die Ummantelung der AuNPs mit einer dünnen Silberschicht betreffen. Es wird gezeigt, dass durch die Optimierung aller Parameter die Detektion einzelner TAMRA- und Cyanin 3 (Cy3)-Moleküle mittels SERS möglich ist. Weiterhin wird Graphen, ein erst im Jahr 2004 entdecktes Material bestehend aus einer einzigen Schicht Kohlenstoffatome, als weiterer Bestandteil der untersuchten Nanostrukturen eingeführt. Graphen zeichnet sich durch eine bislang einzigartige Kombination aus optischen, elektronischen und mechanischen Eigenschaften aus und hat sich daher innerhalb kürzester Zeit zu einem vielfältigen Forschungsschwerpunkt entwickelt. In der vorliegenden Dissertation wird zunächst die erhöhte strukturelle Stabilität von Graphen bedeckten DNA Origami-Substraten im Hinblick auf mechanische Beanspruchung sowie auf die Inkubation in deionisiertem Wasser demonstriert. In weiterführenden Betrachtungen werden auch DNA Origami-Substrate, die mit AuNP-Dimeren funktionalisiert sind, mit Graphen bedeckt, und somit eine neuartige Hybridstruktur erzeugt. Es wird gezeigt, dass Graphen den Fluoreszenzuntergrund der untersuchten Farbstoffmoleküle deutlich reduziert und zusätzlich deren Photostabilität gegenüber der eintreffenden Laserstrahlung effektiv verbessert. KW - DNA origami KW - surface-enhanced Raman scattering KW - DNA nanostructures KW - graphene KW - single-molecule detection KW - DNA Origami KW - oberflächenverstärkte Raman-Streuung KW - DNA Nanostrukturen KW - Graphen KW - Einzelmoleküldetektion Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-104089 ER - TY - JOUR A1 - Prinz, Julia A1 - Matkovic, Aleksandar A1 - Pesic, Jelena A1 - Gajic, Rados A1 - Bald, Ilko T1 - Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene JF - Small N2 - A combination of three innovative materials within one hybrid structure to explore the synergistic interaction of their individual properties is presented. The unique electronic, mechanical, and thermal properties of graphene are combined with the plasmonic properties of gold nanoparticle (AuNP) dimers, which are assembled using DNA origami nanostructures. This novel hybrid structure is characterized by means of correlated atomic force microscopy and surface-enhanced Raman scattering (SERS). It is demonstrated that strong interactions between graphene and AuNPs result in superior SERS performance of the hybrid structure compared to their individual components. This is particularly evident in efficient fluorescence quenching, reduced background, and a decrease of the photobleaching rate up to one order of magnitude. The versatility of DNA origami structures to serve as interface for complex and precise arrangements of nanoparticles and other functional entities provides the basis to further exploit the potential of the here presented DNA origami-AuNP dimer-graphene hybrid structures. Y1 - 2016 U6 - https://doi.org/10.1002/smll.201601908 SN - 1613-6810 SN - 1613-6829 VL - 12 SP - 5458 EP - 5467 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Oertel, Jana A1 - Keller, Adrian A1 - Prinz, Julia A1 - Schreiber, Benjamin A1 - Huebner, Rene A1 - Kerbusch, Jochen A1 - Bald, Ilko A1 - Fahmy, Karim T1 - Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion JF - Scientific reports N2 - Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the "outer shape" of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of similar to 10 nm diameter containing a lipid bilayer similar to 5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. Y1 - 2016 U6 - https://doi.org/10.1038/srep26718 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Prinz, Julia A1 - Heck, Christian A1 - Ellerik, Lisa A1 - Merk, Virginia A1 - Bald, Ilko T1 - DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity JF - Nanoscale N2 - DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 10(10), which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Y1 - 2016 U6 - https://doi.org/10.1039/c5nr08674d SN - 2040-3364 SN - 2040-3372 VL - 8 SP - 5612 EP - 5620 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Matkovic, Aleksandar A1 - Vasic, Borislav A1 - Pesic, Jelena A1 - Prinz, Julia A1 - Bald, Ilko A1 - Milosavljevic, Aleksandar R. A1 - Gajic, Rados T1 - Enhanced structural stability of DNA origami nanostructures by graphene encapsulation JF - NEW JOURNAL OF PHYSICS N2 - We demonstrate that a single-layer graphene replicates the shape of DNA origami nanostructures very well. It can be employed as a protective layer for the enhancement of structural stability of DNA origami nanostructures. Using the AFM based manipulation, we show that the normal force required to damage graphene encapsulated DNA origami nanostructures is over an order of magnitude greater than for the unprotected ones. In addition, we show that graphene encapsulation offers protection to the DNA origami nanostructures against prolonged exposure to deionized water, and multiple immersions. Through these results we demonstrate that graphene encapsulated DNA origami nanostructures are strong enough to sustain various solution phase processing, lithography and transfer steps, thus extending the limits of DNA-mediated bottom-up fabrication. KW - graphene KW - DNA origami nanostructures KW - atomic force microscopy Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/025016 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Prinz, Julia A1 - Heck, Christian A1 - Ellerik, Lisa A1 - Merk, Virginia A1 - Bald, Ilko T1 - DNA origami based Au–Ag-core–shell nanoparticle dimers with single-molecule SERS sensitivity JF - Nanoscale N2 - DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Y1 - 2016 U6 - https://doi.org/10.1039/C5NR08674D IS - 8 SP - 5612 EP - 5620 PB - RSC Publishing CY - Cambridge ER - TY - JOUR A1 - Vogel, Stefanie A1 - Rackwitz, Jenny A1 - Schuerman, Robin A1 - Prinz, Julia A1 - Milosavljevic, Aleksandar R. A1 - Refregiers, Matthieu A1 - Giuliani, Alexandre A1 - Bald, Ilko T1 - Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage JF - The journal of physical chemistry letters N2 - We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonudeotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpclett.5b02238 SN - 1948-7185 VL - 6 IS - 22 SP - 4589 EP - 4593 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Prinz, Julia A1 - Schreiber, Benjamin A1 - Olejko, Lydia A1 - Oertel, Jana A1 - Rackwitz, Jenny A1 - Keller, Adrian A1 - Bald, Ilko T1 - DNA origami substrates for highly sensitive surface-enhanced raman scattering JF - The journal of physical chemistry letters N2 - DNA nanotechnology holds great promise for the fabrication of novel plasmonic nanostructures and the potential to carry out single-molecule measurements using optical spectroscopy. Here, we demonstrate for the first time that DNA origami nanostructures can be exploited as substrates for surface-enhanced Raman scattering (SERS). Gold nanoparticles (AuNPs) have been arranged into dimers to create intense Raman scattering hot spots in the interparticle gaps. AuNPs (15 nm) covered with TAMRA-modified DNA have been placed at a nominal distance of 25 nm to demonstrate the formation of Raman hot spots. To control the plasmonic coupling between the nanoparticles and thus the field enhancement in the hot spot, the size of AuNPs has been varied from 5 to 28 nm by electroless Au deposition. By the precise positioning of a specific number of TAMRA molecules in these hot spots, SERS with the highest sensitivity down to the few-molecule level is obtained. Y1 - 2013 U6 - https://doi.org/10.1021/jz402076b SN - 1948-7185 VL - 4 IS - 23 SP - 4140 EP - 4145 PB - American Chemical Society CY - Washington ER -