TY - JOUR A1 - Dittmann-Thünemann, Elke A1 - Gugger, Muriel A1 - Sivonen, Kaarina A1 - Fewer, David P. T1 - Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria JF - Trends in microbiology N2 - Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms. Y1 - 2015 U6 - https://doi.org/10.1016/j.tim.2015.07.008 SN - 0966-842X SN - 1878-4380 VL - 23 IS - 10 SP - 642 EP - 652 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Neilan, Brett A. A1 - Pearson, Leanne A. A1 - Münchhoff, Julia A1 - Moffitt, Michelle C. A1 - Dittmann-Thünemann, Elke T1 - Environmental conditions that influence toxin biosynthesis in cyanobacteria JF - Environmental microbiology N2 - Over the past 15 years, the genetic basis for production of many cyanobacterial bioactive compounds has been described. This knowledge has enabled investigations into the environmental factors that regulate the production of these toxins at the molecular level. Such molecular or systems level studies are also likely to reveal the physiological role of the toxin and contribute to effective water resource management. This review focuses on the environmental regulation of some of the most relevant cyanotoxins, namely the microcystins, nodularin, cylindrospermopsin, saxitoxins, anatoxins and jamaicamides. Y1 - 2013 U6 - https://doi.org/10.1111/j.1462-2920.2012.02729.x SN - 1462-2912 VL - 15 IS - 5 SP - 1239 EP - 1253 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Dittmann-Thünemann, Elke A1 - Fewer, David P. A1 - Neilan, Brett A. T1 - Cyanobacterial toxins biosynthetic routes and evolutionary roots JF - FEMS microbiology reviews N2 - Cyanobacteria produce an unparalleled variety of toxins that can cause severe health problems or even death in humans, and wild or domestic animals. In the last decade, biosynthetic pathways have been assigned to the majority of the known toxin families. This review summarizes current knowledge about the enzymatic basis for the production of the hepatotoxins microcystin and nodularin, the cytotoxin cylindrospermopsin, the neurotoxins anatoxin and saxitoxin, and the dermatotoxin lyngbyatoxin. Elucidation of the biosynthetic pathways of the toxins has paved the way for the development of molecular techniques for the detection and quantification of the producing cyanobacteria in different environments. Phylogenetic analyses of related clusters from a large number of strains has also allowed for the reconstruction of the evolutionary scenarios that have led to the emergence, diversification, and loss of such gene clusters in different strains and genera of cyanobacteria. Advances in the understanding of toxin biosynthesis and evolution have provided new methods for drinking-water quality control and may inspire the development of techniques for the management of bloom formation in the future. KW - microcystin KW - cylindrospermopsin KW - anatoxin KW - saxitoxin KW - cyanobacteria Y1 - 2013 U6 - https://doi.org/10.1111/j.1574-6976.2012.12000.x SN - 0168-6445 SN - 1574-6976 VL - 37 IS - 1 SP - 23 EP - 43 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Arnison, Paul G. A1 - Bibb, Mervyn J. A1 - Bierbaum, Gabriele A1 - Bowers, Albert A. A1 - Bugni, Tim S. A1 - Bulaj, Grzegorz A1 - Camarero, Julio A. A1 - Campopiano, Dominic J. A1 - Challis, Gregory L. A1 - Clardy, Jon A1 - Cotter, Paul D. A1 - Craik, David J. A1 - Dawson, Michael A1 - Dittmann-Thünemann, Elke A1 - Donadio, Stefano A1 - Dorrestein, Pieter C. A1 - Entian, Karl-Dieter A1 - Fischbach, Michael A. A1 - Garavelli, John S. A1 - Goeransson, Ulf A1 - Gruber, Christian W. A1 - Haft, Daniel H. A1 - Hemscheidt, Thomas K. A1 - Hertweck, Christian A1 - Hill, Colin A1 - Horswill, Alexander R. A1 - Jaspars, Marcel A1 - Kelly, Wendy L. A1 - Klinman, Judith P. A1 - Kuipers, Oscar P. A1 - Link, A. James A1 - Liu, Wen A1 - Marahiel, Mohamed A. A1 - Mitchell, Douglas A. A1 - Moll, Gert N. A1 - Moore, Bradley S. A1 - Mueller, Rolf A1 - Nair, Satish K. A1 - Nes, Ingolf F. A1 - Norris, Gillian E. A1 - Olivera, Baldomero M. A1 - Onaka, Hiroyasu A1 - Patchett, Mark L. A1 - Piel, Jörn A1 - Reaney, Martin J. T. A1 - Rebuffat, Sylvie A1 - Ross, R. Paul A1 - Sahl, Hans-Georg A1 - Schmidt, Eric W. A1 - Selsted, Michael E. A1 - Severinov, Konstantin A1 - Shen, Ben A1 - Sivonen, Kaarina A1 - Smith, Leif A1 - Stein, Torsten A1 - Suessmuth, Roderich D. A1 - Tagg, John R. A1 - Tang, Gong-Li A1 - Truman, Andrew W. A1 - Vederas, John C. A1 - Walsh, Christopher T. A1 - Walton, Jonathan D. A1 - Wenzel, Silke C. A1 - Willey, Joanne M. A1 - van der Donk, Wilfred A. T1 - Ribosomally synthesized and post-translationally modified peptide natural products overview and recommendations for a universal nomenclature JF - Natural product reports : a journal of current developments in bio-organic chemistry N2 - This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed. Y1 - 2013 U6 - https://doi.org/10.1039/c2np20085f SN - 0265-0568 VL - 30 IS - 1 SP - 108 EP - 160 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Welker, Martin A1 - Dittmann-Thünemann, Elke A1 - von Doehren, Hans ED - Hopwood, DA T1 - Cyanobacteria as a source of natural products JF - Methods in enzymology JF - Methods in Enzymology N2 - Cyanobacteria or blue-green algae from various environments have been recognized as sources of a variety of bioactive metabolites. Strategies of strain isolation from aquatic habitats, and cultivation and harvesting for metabolite production are described. Strategies for screening of compounds are discussed, including their direct MALDI-TOF mass spectrometric detection in whole cells. Genetic approaches including genomic mining, mutagenesis including transcriptional activation, heterologous expression, and in vitro. reconstitution of pathways are presented. Y1 - 2012 SN - 978-0-12-404634-4 U6 - https://doi.org/10.1016/B978-0-12-404634-4.00002-4 SN - 0076-6879 VL - 517 IS - 1 SP - 23 EP - 46 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Kaplan, Aaron A1 - Harel, Moshe A1 - Kaplan-Levy, Ruth N. A1 - Hadas, Ora A1 - Sukenik, Assaf A1 - Dittmann-Thünemann, Elke T1 - The languages spoken in the water body (or the biological role of cyanobacterial toxins) JF - Frontiers in microbiology N2 - Although intensification of toxic cyanobacterial blooms over the last decade is a matter of growing concern due to bloom impact on water quality, the biological role of most of the toxins produced is not known. In this critical review we focus primarily on the biological role of two toxins, microcystins and cylindrospermopsin, in inter- and intra-species communication and in nutrient acquisition. We examine the experimental evidence supporting some of the dogmas in the field and raise several open questions to be dealt with in future research. We do not discuss the health and environmental implications of toxin presence in the water body. KW - aoa KW - cylindrospermopsin KW - microcystin KW - cyr KW - mcy Y1 - 2012 U6 - https://doi.org/10.3389/fmicb.2012.00138 SN - 1664-302X VL - 3 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Kehr, Jan-Christoph A1 - Picchi, Douglas Gatte A1 - Dittmann-Thünemann, Elke T1 - Natural product biosyntheses in cyanobacteria a treasure trove of unique enzymes JF - Beilstein journal of organic chemistry N2 - Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future. KW - cyanobacteria KW - natural products KW - NRPS KW - PKS KW - ribosomal peptides Y1 - 2011 U6 - https://doi.org/10.3762/bjoc.7.191 SN - 1860-5397 VL - 7 IS - 2 SP - 1622 EP - 1635 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER -