TY - GEN A1 - Heinken, Thilo A1 - Winkler, Eckart T1 - Non-random dispersal by ants : long-term field data versus model predictions of population spread of a forest herb N2 - Myrmecochory, i.e. dispersal of seeds by ants towards and around their nests, plays an important role in temperate forests. Yet hardly any study has examined plant population spread over several years and the underlying joint contribution of a hierarchy of dispersal modes and plant demography. We used a seed-sowing approach with three replicates to examine colonization patterns of Melampyrum pratense, an annual myrmecochorous herb, in a mixed Scots pine forest in northeastern Germany. Using a spatially explicit individualbased (SEIB) model population patterns over 4 years were explained by short-distance transport of seeds by small ant species with high nest densities, resulting in random spread. However, plant distributions in the field after another 4 years were clearly deviating from model predictions. Mean annual spread rate increased from 0.9 m to 5.1 m per year, with a clear inhomogeneous component. Obviously, after a lag-phase of several years, non-random seed dispersal by large red wood ants (Formica rufa) was determining the species’ spread, thus resulting in stratified dispersal due to interactions with different-sized ant species. Hypotheses on stratified dispersal, on dispersal lag, and on non-random dispersal were verified using an extended SEIB model, by comparison of model outputs with field patterns (individual numbers, population areas, and maximum distances). Dispersal towards red wood ant nests together with seed loss during transport and redistribution around nests were essential features of the model extension. The observed lag-phase in the initiation of non-random, medium-distance transport was probably due to a change of ant behaviour towards a new food source of increasing importance, being a meaningful example for a lag-phase in local plant species invasion. The results demonstrate that field studies should check model predictions wherever possible. Future research will show whether or not the M. pratense–ant system is representative for migration patterns of similar animal dispersal systems after having crossed range edges by long-distance dispersal events. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 151 KW - Melampyrum pratense KW - population dynamics KW - seed dispersal KW - non-random dispersal KW - plant-animal interaction Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-46482 ER - TY - JOUR A1 - Itonaga, Naomi A1 - Köppen, Ulrich A1 - Plath, Martin A1 - Wallschläger, Hans-Dieter T1 - Declines in breeding site fidelity in an increasing population of White Storks Ciconia ciconia JF - IBIS N2 - Following a steep decline, White Stork Ciconia ciconia populations in Germany are currently increasing, allowing us to examine potential density-dependent effects on breeding dispersal. Our data suggest that the proportion of breeding dispersers has increased over time, indicating a density-dependent component in nest-site fidelity that may be linked to increased competition. KW - age-dependent dispersal KW - density-dependent dispersal KW - population dynamics Y1 - 2011 SN - 0019-1019 VL - 153 IS - 3 SP - 636 EP - 639 PB - Wiley-Blackwell CY - Malden ER - TY - THES A1 - Patra, Pintu T1 - Population dynamics of bacterial persistence T1 - Populationsdynamik von Bakterielle Persistenz N2 - The life of microorganisms is characterized by two main tasks, rapid growth under conditions permitting growth and survival under stressful conditions. The environments, in which microorganisms dwell, vary in space and time. The microorganisms innovate diverse strategies to readily adapt to the regularly fluctuating environments. Phenotypic heterogeneity is one such strategy, where an isogenic population splits into subpopulations that respond differently under identical environments. Bacterial persistence is a prime example of such phenotypic heterogeneity, whereby a population survives under an antibiotic attack, by keeping a fraction of population in a drug tolerant state, the persister state. Specifically, persister cells grow more slowly than normal cells under growth conditions, but survive longer under stress conditions such as the antibiotic administrations. Bacterial persistence is identified experimentally by examining the population survival upon an antibiotic treatment and the population resuscitation in a growth medium. The underlying population dynamics is explained with a two state model for reversible phenotype switching in a cell within the population. We study this existing model with a new theoretical approach and present analytical expressions for the time scale observed in population growth and resuscitation, that can be easily used to extract underlying model parameters of bacterial persistence. In addition, we recapitulate previously known results on the evolution of such structured population under periodically fluctuating environment using our simple approximation method. Using our analysis, we determine model parameters for Staphylococcus aureus population under several antibiotics and interpret the outcome of cross-drug treatment. Next, we consider the expansion of a population exhibiting phenotype switching in a spatially structured environment consisting of two growth permitting patches separated by an antibiotic patch. The dynamic interplay of growth, death and migration of cells in different patches leads to distinct regimes in population propagation speed as a function of migration rate. We map out the region in parameter space of phenotype switching and migration rate to observe the condition under which persistence is beneficial. Furthermore, we present an extended model that allows mutation from the two phenotypic states to a resistant state. We find that the presence of persister cells may enhance the probability of resistant mutation in a population. Using this model, we explain the experimental results showing the emergence of antibiotic resistance in a Staphylococcus aureus population upon tobramycin treatment. In summary, we identify several roles of bacterial persistence, such as help in spatial expansion, development of multidrug tolerance and emergence of antibiotic resistance. Our study provides a theoretical perspective on the dynamics of bacterial persistence in different environmental conditions. These results can be utilized to design further experiments, and to develop novel strategies to eradicate persistent infections. N2 - Das Leben von Mikroorganismen kann in zwei charakteristische Phasen unterteilt werde, schnelles Wachstum unter Wachstumsbedingungen und Überleben unter schwierigen Bedingungen. Die Bedingungen, in denen sich die Mikroorganismen aufhalten, verändern sich in Raum und Zeit. Um sich schnell an die ständig wechselnden Bedingungen anzupassen entwickeln die Mikroorganismen diverse Strategien. Phänotypische Heterogenität ist eine solche Strategie, bei der sich eine isogene Popolation in Untergruppen aufteilt, die unter identischen Bedingungen verschieden reagieren. Bakterielle Persistenz ist ein Paradebeispiel einer solchen phänotypischen Heterogenität. Hierbei überlebt eine Popolation die Behandlung mit einem Antibiotikum, indem sie einen Teil der Bevölkerung in einem, dem Antibiotikum gegenüber tolerant Zustand lässt, der sogenannte "persister Zustand". Persister-Zellen wachsen unter Wachstumsbedingungen langsamer als normale Zellen, jedoch überleben sie länger in Stress-Bedingungen, wie bei Antibiotikaapplikation. Bakterielle Persistenz wird experimentell erkannt indem man überprüft ob die Population eine Behandlung mit Antibiotika überlebt und sich in einem Wachstumsmedium reaktiviert. Die zugrunde liegende Popolationsdynamik kann mit einem Zwei-Zustands-Modell für reversibles Wechseln des Phänotyps einer Zelle in der Bevölkerung erklärt werden. Wir untersuchen das bestehende Modell mit einem neuen theoretischen Ansatz und präsentieren analytische Ausdrücke für die Zeitskalen die für das Bevölkerungswachstums und die Reaktivierung beobachtet werden. Diese können dann einfach benutzt werden um die Parameter des zugrunde liegenden bakteriellen Persistenz-Modells zu bestimmen. Darüber hinaus rekapitulieren wir bisher bekannten Ergebnisse über die Entwicklung solch strukturierter Bevölkerungen unter periodisch schwankenden Bedingungen mithilfe unseres einfachen Näherungsverfahrens. Mit unserer Analysemethode bestimmen wir Modellparameter für eine Staphylococcus aureus-Popolation unter dem Einfluss mehrerer Antibiotika und interpretieren die Ergebnisse der Behandlung mit zwei Antibiotika in Folge. Als nächstes betrachten wir die Ausbreitung einer Popolation mit Phänotypen-Wechsel in einer räumlich strukturierten Umgebung. Diese besteht aus zwei Bereichen, in denen Wachstum möglich ist und einem Bereich mit Antibiotikum der die beiden trennt. Das dynamische Zusammenspiel von Wachstum, Tod und Migration von Zellen in den verschiedenen Bereichen führt zu unterschiedlichen Regimen der Populationsausbreitungsgeschwindigkeit als Funktion der Migrationsrate. Wir bestimmen die Region im Parameterraum der Phänotyp Schalt-und Migrationsraten, in der die Bedingungen Persistenz begünstigen. Darüber hinaus präsentieren wir ein erweitertes Modell, das Mutation aus den beiden phänotypischen Zuständen zu einem resistenten Zustand erlaubt. Wir stellen fest, dass die Anwesenheit persistenter Zellen die Wahrscheinlichkeit von resistenten Mutationen in einer Population erhöht. Mit diesem Modell, erklären wir die experimentell beobachtete Entstehung von Antibiotika- Resistenz in einer Staphylococcus aureus Popolation infolge einer Tobramycin Behandlung. Wir finden also verschiedene Funktionen bakterieller Persistenz. Sie unterstützt die räumliche Ausbreitung der Bakterien, die Entwicklung von Toleranz gegenüber mehreren Medikamenten und Entwicklung von Resistenz gegenüber Antibiotika. Unsere Beschreibung liefert eine theoretische Betrachtungsweise der Dynamik bakterieller Persistenz bei verschiedenen Bedingungen. Die Resultate könnten als Grundlage neuer Experimente und der Entwicklung neuer Strategien zur Ausmerzung persistenter Infekte dienen. KW - Populationsdynamik KW - Antibiotikaresistenz KW - Antibiotika-Toleranz KW - Phänotypische Heterogenität KW - population dynamics KW - drug tolerance KW - antibiotic resistance KW - phenotypic heterogeneity Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-69253 ER - TY - JOUR A1 - Sibly, Richard M. A1 - Grimm, Volker A1 - Martin, Benjamin T. A1 - Johnston, Alice S. A. A1 - Kulakowska, Katarzyna A1 - Topping, Christopher J. A1 - Calow, Peter A1 - Nabe-Nielsen, Jacob A1 - Thorbek, Pernille A1 - DeAngelis, Donald L. T1 - Representing the acquisition and use of energy by individuals in agent-based models of animal populations JF - Methods in ecology and evolution : an official journal of the British Ecological Society N2 - Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. KW - bioenergetics KW - energy budget KW - individual-based models KW - population dynamics Y1 - 2013 U6 - https://doi.org/10.1111/2041-210x.12002 SN - 2041-210X VL - 4 IS - 2 SP - 151 EP - 161 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Massie, Thomas Michael A1 - Ryabov, Alexei A1 - Blasius, Bernd A1 - Weithoff, Guntram A1 - Gaedke, Ursula T1 - Complex transient dynamics of stage-structured populations in response to environmental changes JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - Stage structures of populations can have a profound influence on their dynamics. However, not much is known about the transient dynamics that follow a disturbance in such systems. Here we combined chemostat experiments with dynamical modeling to study the response of the phytoplankton species Chlorella vulgaris to press perturbations. From an initially stable steady state, we altered either the concentration or dilution rate of a growth-limiting resource. This disturbance induced a complex transient response-characterized by the possible onset of oscillations-before population numbers relaxed to a new steady state. Thus, cell numbers could initially change in the opposite direction of the long-term change. We present quantitative indexes to characterize the transients and to show that the dynamic response is dependent on the degree of synchronization among life stages, which itself depends on the state of the population before perturbation. That is, we show how identical future steady states can be approached via different transients depending on the initial population structure. Our experimental results are supported by a size-structured model that accounts for interplay between cell-cycle and population-level processes and that includes resource-dependent variability in cell size. Our results should be relevant to other populations with a stage structure including organisms of higher order. KW - chemostat experiments KW - Chlorella vulgaris KW - environmental changes KW - population dynamics KW - stage structure KW - transient dynamics Y1 - 2013 U6 - https://doi.org/10.1086/670590 SN - 0003-0147 SN - 1537-5323 VL - 182 IS - 1 SP - 103 EP - 119 PB - Univ. of Chicago Press CY - Chicago ER - TY - THES A1 - Martin, Benjamin T1 - Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology T1 - Individuenbasierte Modelle mit dynamischen Energiehaushalten bereichern die Ökologie und Ökotoxikologie N2 - In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable for being used as a standard submodel in individual-based models, both for ecological risk assessment and theoretical population ecology. First, I developed a generic implementation of DEB theory in an individual-based modeling (IBM) context: DEB-IBM. Using the DEB-IBM framework I tested the ability of the DEB theory to predict population-level dynamics from the properties of individuals. We used Daphnia magna as a model species, where data at the individual level was available to parameterize the model, and population-level predictions were compared against independent data from controlled population experiments. We found that DEB theory successfully predicted population growth rates and peak densities of experimental Daphnia populations in multiple experimental settings, but failed to capture the decline phase, when the available food per Daphnia was low. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detecting gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. In addition to theoretical explorations, we tested the potential of DEB theory combined with IBMs to extrapolate effects of chemical stress from the individual to population level. For this we used information at the individual level on the effect of 3,4-dichloroanailine on Daphnia. The individual data suggested direct effects on reproduction but no significant effects on growth. Assuming such direct effects on reproduction, the model was able to accurately predict the population response to increasing concentrations of 3,4-dichloroaniline. We conclude that DEB theory combined with IBMs holds great potential for standardized ecological risk assessment based on ecological models. N2 - Für die ökologische Risikobewertung von Chemikalien sind individuenbasierte Populationsmodelle ein vielversprechendes Werkzeug um heutige Bewertungen ökologisch realistischer zu gestalten. Allerdings ist die Entwicklung und Parametrisierung derartiger Modelle zeitaufwendig und oft wenig systematisch. Standardisierte, geprüfte Untermodelle, die Einzelorganismen beschreiben, würden die individuenbasierte Modellierung effizienter und kohärenter machen. In meiner Dissertation habe ich daher untersucht, inwieweit sich die Dynamic Energy Budget-Theorie (DEB) als Standardmodell innerhalb individuenbasierter Populationsmodelle eignet, und zwar sowohl für die ökologische Risikobewertung als auch für die theoretische Populationsökologie. Zunächst habe ich eine generische Implementierung der DEB-Theorie im Rahmen individuenbasierter Modellen (IBM) erstellt: DEB-IBM. Dieses Werkzeug nutzend habe ich dann untersucht, ob es mit Hilfe der DEB-Theorie gelingt, ausgehend von den Eigenschaften und Aktivitäten einzelner Individuen, Populationsdynamik vorherzusagen. Wir nutzten dabei Daphnia magna als Modellart, für die Daten auf der Individuenebene verfügbar waren, um das Modell zu parametrisieren, sowie Populationsdaten, mit denen Modellvorhersagen verglichen werden konnten. DEB-Theorie war in der Lage, beobachtete Populationswachstumsraten sowie die maximalen Abundanzen korrekt vorherzusagen, und zwar für verschiedene Umweltbedingungen. Für Phasen des Rückgangs der Population allerdings, wenn die für die Daphnien verfügbare Nahrungsmenge gering war, kam es zu Abweichungen. Es waren deshalb zusätzliche Annahmen über nahrungsabhängige Sterblichkeit von juvenilen Daphnien erforderlich, um die gesamte Populationsdynamik korrekt vorherzusagen. Das resultierende Modell konnte dann, ohne weitere Kalibrierungen, den für Daphnien charakteristischen Wechsel zwischen Populationszyklen mit großen und kleinen Amplituden richtig vorhersagen. Wir folgern daraus, daß Ebenen übergreifende Tests dabei helfen, Lücken in aktuellen Theorien über Einzelorganismen aufzudecken Dies trägt zur Theorieentwicklung bei und liefert Grundlagen für individuenbasierte Modellierung und Ökologie. Über diese Grundlagenfragen hinaus haben wir überprüft, ob DEB-Theorie in Kombination mit IBMs es ermöglicht, den Effekt von chemischem Streß auf Individuen auf die Populationsebene zu extrapolieren. Wir nutzten Daten über die Auswirkungen von 3,4 Dichloroanalin auf einzelne Daphnien, die zeigten daß im Wesentlichen die Reproduktion, nicht aber das Wachstum beeinträchtigt ist. Mit entsprechenden Annahmen konnte unser Modell den Effekt auf Populationsebene, für den unabhängige Daten vorlagen, korrekt vorhersagen. DEB-Theorie in Kombination mit individuenbasierter Modellierung birgt somit großes Potential für einen standardisierten modellbasierten Ansatz in der ökologischen Risikobewertung von Chemikalien. KW - Ökologie KW - Ökotoxikologie KW - Populationsdynamik KW - Ecology KW - Ecotoxicology KW - population dynamics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-67001 ER - TY - JOUR A1 - Martin, Benjamin T. A1 - Jager, Tjalling A1 - Nisbet, Roger M. A1 - Preuss, Thomas G. A1 - Grimm, Volker T1 - Predicting population dynamics from the properties of individuals - a cross-level test of dynamic energy budget theory JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small-and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. KW - population dynamics KW - dynamic energy budget theory KW - bioenergetics KW - individual-based model Y1 - 2013 U6 - https://doi.org/10.1086/669904 SN - 0003-0147 VL - 181 IS - 4 SP - 506 EP - 519 PB - Univ. of Chicago Press CY - Chicago ER - TY - JOUR A1 - Bauer, Barbara A1 - Vos, Matthijs A1 - Klauschies, Toni A1 - Gaedke, Ursula T1 - Diversity, functional similarity, and top-down control drive synchronization and the reliability of ecosystem function JF - The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences N2 - The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within--trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function. KW - biodiversity KW - ecosystem services KW - population dynamics KW - predator-prey system KW - species richness KW - synchrony Y1 - 2014 U6 - https://doi.org/10.1086/674906 SN - 0003-0147 SN - 1537-5323 VL - 183 IS - 3 SP - 394 EP - 409 PB - Univ. of Chicago Press CY - Chicago ER - TY - JOUR A1 - Martin, Benjamin A1 - Jager, Tjalling A1 - Nisbet, Roger M. A1 - Preuss, Thomas G. A1 - Grimm, Volker T1 - Limitations of extrapolating toxic effects on reproduction to the population level JF - Ecological applications : a publication of the Ecological Society of America N2 - For the ecological risk assessment of toxic chemicals, standardized tests on individuals are often used as proxies for population-level effects. Here, we address the utility of one commonly used metric, reproductive output, as a proxy for population-level effects. Because reproduction integrates the outcome of many interacting processes (e.g., feeding, growth, allocation of energy to reproduction), the observed toxic effects in a reproduction test could be due to stress on one of many processes. Although this makes reproduction a robust endpoint for detecting stress, it may mask important population-level consequences if the different physiological processes stress affects are associated with different feedback mechanisms at the population level. We therefore evaluated how an observed reduction in reproduction found in a standard reproduction test translates to effects at the population level if it is caused by hypothetical toxicants affecting different physiological processes (physiological modes of action; PMoA). For this we used two consumer-resource models: the Yodzis-Innes (YI) model, which is mathematically tractable, but requires strong assumptions of energetic equivalence among individuals as they progress through ontogeny, and an individual-based implementation of dynamic energy budget theory (DEB-IBM), which relaxes these assumptions at the expense of tractability. We identified two important feedback mechanisms controlling the link between individual- and population-level stress in the YI model. These mechanisms turned out to also be important for interpreting some of the individual-based model results; for two PMoAs, they determined the population response to stress in both models. In contrast, others stress types involved more complex feedbacks, because they asymmetrically stressed the production efficiency of reproduction and somatic growth. The feedbacks associated with different PMoAs drastically altered the link between individual- and population-level effects. For example, hypothetical stressors with different PMoAs that had equal effects on reproduction had effects ranging from a negligible decline in biomass to population extinction. Thus, reproduction tests alone are of little use for extrapolating toxicity to the population level, but we showed that the ecological relevance of standard tests could easily be improved if growth is measured along with reproduction. KW - Daphnia KW - dynamic energy budget KW - ecological risk assessment KW - ecotoxicology KW - ontogenetic symmetry KW - physiological mode of action KW - PMoA KW - population dynamics KW - reproduction test KW - Yodzis-Innes Y1 - 2014 U6 - https://doi.org/10.1890/14-0656.1 SN - 1051-0761 SN - 1939-5582 VL - 24 IS - 8 SP - 1972 EP - 1983 PB - Wiley CY - Washington ER - TY - JOUR A1 - Imholt, Christian A1 - Reil, Daniela A1 - Eccard, Jana A1 - Jacob, Daniela A1 - Hempelmann, Nils A1 - Jacob, Jens T1 - Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus) JF - Pest management science N2 - BACKGROUND Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. RESULTS Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. CONCLUSION Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. (c) 2014 Society of Chemical Industry KW - climate change KW - population dynamics KW - bank vole KW - regression tree KW - outbreak Y1 - 2015 U6 - https://doi.org/10.1002/ps.3838 SN - 1526-498X SN - 1526-4998 VL - 71 IS - 2 SP - 166 EP - 172 PB - Wiley-Blackwell CY - Hoboken ER -