TY - THES A1 - Sobal, Neli T1 - Kolloidale Nanosysteme aus magnetischen und metallischen Materialien : Synthese und Charakterisierung N2 - Ein Spezialgebiet der modernen Mikroelektronik ist die Miniaturisierung und Entwicklung von neuen nanostrukturierten und Komposit-Materialen aus 3d-Metallen. Durch geeignete Zusammensetzungen können diese sowohl mit einer hohen Sättigungsmagnetisierung und Koerzitivfeldstärke als mit besserer Oxidationsbeständigkeit im Vergleich zu den reinen Elementen erzielt werden. In der vorliegenden Arbeit werden neue Methoden für die Herstellung von bimetallischen kolloidalen Nanopartikeln vor allem mit einer Kern-Hülle-Struktur (Kern@Hülle) präsentiert. Bei der überwiegenden Zahl der vorgestellten Reaktionen handelt es sich um die thermische Zersetzung von metallorganischen Verbindungen wie Kobaltcarbonyl, Palladium- und Platinacetylacetonate oder die chemische Reduktion von Metallsalze mit langkettigem Alkohol in organischem Lösungsmittel. Daneben sind auch Kombinationen aus diesen beiden Verfahren beschrieben. Es wurden Kolloide aus einem reinen Edelmetall (Pt, Pd, Ag) in einem organischen Lösungsmittel synthetisiert und daraus neue, bisher in dieser Form nicht bekannte Ag@Co-, Pt@Co-, Pd@Co- und Pt@Pd@Co-Nanopartikel gewonnen. Der Kobaltgehalt der Ag@Co-, Teilchen konnte im Bereich von 5 bis 73 At. % beliebig eingestellt werden. Der mittlere Durchmesser der Ag@Co-Partikel wurde von 5 nm bis 15 nm variiert. Bei der Herstellung von Pt@Co-Teilchen wurde eine unterschiedlich dicke Kobalt-Hülle von ca. 1,0 bis 2,5 nm erzielt. Im Fall des Palladiums wurden sowohl monodispere als auch polydisperse Pd-Nanopartikel mit einer maximal 1,7-2,0nm dicken Kobalthülle synthetisiert. Ein großer Teil dieser Arbeit befasst sich mit den magnetischen Eigenschaften der kolloidalen Teilchen, wobei die SQUID-Magnetometrie und Röntgenzirkulardichroismus (XMCD) dafür eingesetzt wurden. Weil magnetische Messungen alleine nur indirekte Schlüsse über die untersuchten Systeme erlauben, wurde dabei besonderer Wert auf die möglichst genaue strukturelle Charakterisierung der Proben mittels moderner Untersuchungsmethoden gelegt. Röntgendiffraktometrie (XRD), Röntgenabsorptionsfeinstruktur- (EXAFS) und UV-Vis-Spektroskopie sowie Transmissionselektronenmikroskopie (TEM) in Kombination mit Elektronen Energieverlustspektroskopie (EELS) und energiedispersive Röntgenfluoreszensanalyse (EDX) wurden verwendet. N2 - Magnetic colloidal particles are attractive because of their possible application to ultra-high-density magnetic data storage media, sensors, electronic devices and medical diagnostics. The properties of small particles depend on their composition, shape, and method of preparation. The combination of 3d-metals (Fe, Co, Ni) with noble metals improves the stability of the colloids and leads to new properties of the magnetic systems, often distinct from those of the corresponding monometallic particles. Core-shell particles, where dia- or paramagnetic noble metal-cores are surrounded by a ferromagnetic Co-shell, are an interesting system to study surface and interfacial magnetism such as an induced polarization or a giant magnetoresistance effect. In this work, new synthetic routes for the preparation of monometallic (Pt, Pd, Ag) and bimetallic magnetic nanocrystals (Ag@Co, Pt@Co, Pd@Co) with core-shell structure are presented. Stable colloids with a narrow particle size distribution were obtained in organic solvents using methods of wet chemistry. The method of preparation of Ag@Co is based on the thermal decomposition of dicobalt octycarbonyl in combination with a transmetalation reaction with water free AgClO4. The cobalt amount in the Ag@Co system could be tuned from 5 to 73 at. %. The average diameter of the particles was varied from 5 to 15 nm. The reduction of platinum and palladium salts in organic solution using long chained alcohol as the reductant leads to stable metal nanostructures. Monodisperse Pd and Pt particles with average sizes of 1.7 to 7.0 nm were synthesized via thermal decomposition of metal-surfactant complexes too. Alkylamines and alkylphosphines were used in this procedure. The thickness of the Co-shell was controlled by a simple high-temperature thermolysis of dicobalt octacarbonyl at the presence of Pd and Pt seeds and was tunable from 0.5 to 2.5 nm. The crystalline structure of the samples was characterized by transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDX), UV-VIS and electron-energy loss spectroscopy (EELS). SQUID magnetometry, x-ray magnetic circular dichroism (XMCD) and extended x-ray absorption fine structure (EXAFS) measurements gave information about the magnetic properties of the bimetallic systems and revealed their dependency on the particle size and the chemical composition. A high spin to orbital moments ratio µL/µS of 0.26±0.06 for Ag@Co and 0.22±0.05 for Pt@Co nanocrystals was observed at XMCD measurements due to the lowered dimensionality the investigated systems. KW - Kolloid KW - AgCo KW - PtCo KW - PdCo KW - TEM KW - EDX KW - EELS KW - XMCD KW - Kern-Hülle KW - Herstellung KW - Nanopartikel KW - Kobaltcarbonyl KW - Acetylacetonat KW - Colloid KW - AgCo KW - PtCo KW - PdCo KW - TEM KW - EDX KW - EELS KW - XMCD KW - core-shell KW - synthesis KW - nanoparticles KW - organic solvent KW - decomposition KW - reduction KW - cobalt dicarbonyl KW - a Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001071 ER - TY - THES A1 - Kraupner, Alexander T1 - Neuartige Synthese magnetischer Nanostrukturen: Metallcarbide und Metallnitride der Übergangsmetalle Fe/Co/Ni T1 - Novel synthesis of magnetic nanostructures: metal carbides and metal nitrides of transition metals Fe/Co/Ni N2 - Magnetische Nanopartikel bieten ein großes Potential, da sie einerseits die Eigenschaften ihrer Bulk-Materialien besitzen und anderseits, auf Grund ihrer Größe, über komplett unterschiedliche magnetische Eigenschaften verfügen können; Superparamagnetismus ist eine dieser Eigenschaften. Die meisten etablierten Anwendungen magnetischer Nanopartikel basieren heutzutage auf Eisenoxiden. Diese bieten gute magnetische Eigenschaften, sind chemisch relativ stabil, ungiftig und lassen sich auf vielen Synthesewegen relativ einfach herstellen. Die magnetischen Eigenschaften der Eisenoxide sind materialabhängig aber begrenzt, weshalb nach anderen Verbindungen mit besseren Eigenschaften gesucht werden muss. Eisencarbid (Fe3C) kann eine dieser Verbindungen sein. Dieses besitzt vergleichbare positive Eigenschaften wie Eisenoxid, jedoch viel bessere magnetische Eigenschaften, speziell eine höhere Sättigungsmagnetisierung. Bis jetzt wurde Fe3C hauptsächlich in Gasphasenabscheidungsprozessen synthetisiert oder als Nebenprodukt bei der Synthese von Kohlenstoffstrukturen gefunden. Eine Methode, mit der gezielt Fe3C-Nanopartikel und andere Metallcarbide synthetisiert werden können, ist die „Harnstoff-Glas-Route“. Neben den Metallcarbiden können mit dieser Methode auch die entsprechenden Metallnitride synthetisiert werden, was die breite Anwendbarkeit der Methode unterstreicht. Die „Harnstoff-Glas-Route“ ist eine Kombination eines Sol-Gel-Prozesses mit einer anschließenden carbothermalen Reduktion/Nitridierung bei höheren Temperaturen. Sie bietet den Vorteil einer einfachen und schnellen Synthese verschiedener Metallcarbide/nitride. Der Schwerpunkt in dieser Arbeit lag auf der Synthese von Eisencarbiden/nitriden, aber auch Nickel und Kobalt wurden betrachtet. Durch die Variation der Syntheseparameter konnten verschiedene Eisencarbid/nitrid Nanostrukturen synthetisiert werden. Fe3C-Nanopartikel im Größenbereich von d = 5 – 10 nm konnten, durch die Verwendung von Eisenchlorid, hergestellt werden. Die Nanopartikel weisen durch ihre geringe Größe superparamagnetische Eigenschaften auf und besitzen, im Vergleich zu Eisenoxid Nanopartikeln im gleichen Größenbereich, eine höhere Sättigungsmagnetisierung. Diese konnten in fortführenden Experimenten erfolgreich in ionischen Flüssigkeiten und durch ein Polymer-Coating, im wässrigen Medium, dispergiert werden. Desweiteren wurde durch ein Templatieren mit kolloidalem Silika eine mesoporöse Fe3C-Nanostruktur hergestellt. Diese konnte erfolgreich in der katalytischen Spaltung von Ammoniak getestet werden. Mit der Verwendung von Eisenacetylacetonat konnten neben Fe3C-Nanopartikeln, nur durch Variation der Reaktionsparameter, auch Fe7C3- und Fe3N-Nanopartikel synthetisiert werden. Speziell für die Fe3C-Nanopartikel konnte die Sättigungsmagnetisierung, im Vergleich zu den mit Eisenchlorid synthetisierten Nanopartikeln, nochmals erhöht werden. Versuche mit Nickelacetat führten zu Nickelnitrid (Ni3N) Nanokristallen. Eine zusätzliche metallische Nickelphase führte zu einer Selbstorganisation der Partikel in Scheiben-ähnliche Überstrukturen. Mittels Kobaltacetat konnten, in Sphären aggregierte, metallische Kobalt Nanopartikel synthetisiert werden. Kobaltcarbid/nitrid war mit den gegebenen Syntheseparametern nicht zugänglich. N2 - Magnetic nanoparticles offer a great potential, because they exhibit on the one hand the properties of their bulk materials and on the other hand, because of their size, completely different magnetic properties. The most established applications of magnetic nanoparticles are based on iron oxide. These oxides have good magnetic properties, they are chemical relatively stable, non toxic and easy to prepare. But the magnetic properties are limited. Therefore, we need new materials with improved magnetic properties. Iron carbide (Fe3C) could be one of these materials. Up to now, Fe3C was mainly synthesized in chemical vapor deposition processes (CVD) or was found as side product in the synthesis of carbon structures. A method for the systematical synthesis of metal carbides is the “Urea-Glass-Route”. In addition to the synthesis of metal carbides, this method allows to synthesize metal nitrides, which shows the broad practicability. The “Urea-Glass-Route” is a combination of a sol-gel process with following carbothermal reduction/nitridation at higher temperatures. The method is fast and simple and it is possible to synthesis different metal carbides/nitrides. The main topic of this work is the synthesis of iron carbide/nitride, but also cobalt and nickel is examined. By varying the synthesis parameters, different iron carbide/nitride nanostructures could be synthesized. With the use of iron chloride, Fe3C nanoparticles, in the size range of d = 5 – 10 nm, could be produced. Because of their small size, the particles show superparamagnetism and compared to iron oxide particles (in the same size range) a higher saturation magnetization. In following experiments, the particles could be successfully dispersed in an ionic liquid and with a polymer coating in aqueous medium. Furthermore, via templating with colloidal silica a mesoporous Fe3C structure could be synthesized. The material could be successfully tested in the catalytic ammonia decomposition. By changing the iron source to iron acetylacetonate, Fe7C3 and Fe3N nanoparticles, in addition to Fe3C, could be also synthesized. With nickel acetate it was possible to synthesize nickel nitride (Ni3N) nano crystals. An additional metallic nickel phase in the sample leads to a self organization to disk-like superlattice. Via cobalt acetate, in spheres aggregated, metallic cobalt nanoparticles could be synthesized. Cobalt carbide or nitride was not accessible under these synthesis parameters. KW - Carbide KW - Nitride KW - Eisen KW - Magnetismus KW - Nanopartikel KW - carbides KW - nitrides KW - iron KW - magnetism KW - nanoparticles Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-52314 ER - TY - THES A1 - Bomm, Jana T1 - Von Gold Plasmonen und Exzitonen : Synthese, Charakterisierung und Applikationen von Gold Nanopartikeln T1 - Of gold plasmons and excitons : synthesis, characterization and applications of gold nanoparticles N2 - In dieser Arbeit wurden sphärische Gold Nanopartikel (NP) mit einem Durchmesser größer ~ 2 nm, Gold Quantenpunkte (QDs) mit einem Durchmesser kleiner ~ 2 nm sowie Gold Nanostäbchen (NRs) unterschiedlicher Länge hergestellt und optisch charakterisiert. Zudem wurden zwei neue Synthesevarianten für die Herstellung thermosensitiver Gold QDs entwickelt werden. Sphärische Gold NP zeigen eine Plasmonenbande bei ~ 520 nm, die auf die kollektive Oszillation von Elektronen zurückzuführen ist. Gold NRs weisen aufgrund ihrer anisotropen Form zwei Plasmonenbanden auf, eine transversale Plasmonenbande bei ~ 520 nm und eine longitudinale Plasmonenbande, die vom Länge-zu-Durchmesser-Verhältnis der Gold NRs abhängig ist. Gold QDs besitzen keine Plasmonenbande, da ihre Elektronen Quantenbeschränkungen unterliegen. Gold QDs zeigen jedoch aufgrund diskreter Energieniveaus und einer Bandlücke Photolumineszenz (PL). Die synthetisierten Gold QDs besitzen eine Breitbandlumineszenz im Bereich von ~ 500-800 nm, wobei die Lumineszenz-eigenschaften (Emissionspeak, Quantenausbeute, Lebenszeiten) stark von den Herstellungs-bedingungen und den Oberflächenliganden abhängen. Die PL in Gold QDs ist ein sehr komplexes Phänomen und rührt vermutlich von Singulett- und Triplett-Zuständen her. Gold NRs und Gold QDs konnten in verschiedene Polymere wie bspw. Cellulosetriacetat eingearbeitet werden. Polymernanokomposite mit Gold NRs wurden erstmals unter definierten Bedingungen mechanisch gezogen, um Filme mit optisch anisotropen (richtungsabhängigen) Eigenschaften zu erhalten. Zudem wurde das Temperaturverhalten von Gold NRs und Gold QDs untersucht. Es konnte gezeigt werden, dass eine lokale Variation der Größe und Form von Gold NRs in Polymernanokompositen durch Temperaturerhöhung auf 225-250 °C erzielt werden kann. Es zeigte sich, dass die PL der Gold QDs stark temperaturabhängig ist, wodurch die PL QY der Proben beim Abkühlen (-7 °C) auf knapp 30 % verdoppelt und beim Erhitzen auf 70 °C nahezu vollständig gelöscht werden konnte. Es konnte demonstriert werden, dass die Länge der Alkylkette des Oberflächenliganden einen Einfluss auf die Temperaturstabilität der Gold QDs hat. Zudem wurden verschiedene neuartige und optisch anisotrope Sicherheitslabels mit Gold NRs sowie thermosensitive Sicherheitslabel mit Gold QDs entwickelt. Ebenso scheinen Gold NRs und QDs für die und die Optoelektronik (bspw. Datenspeicherung) und die Medizin (bspw. Krebsdiagnostik bzw. -therapie) von großem Interesse zu sein. N2 - In this thesis, the synthesis and optical characterization of spherical gold nanoparticles (NP) with diameters larger than ~ 2 nm, gold quantum dots (QDs) with diameters smaller than ~ 2 nm and gold nanorods (NRs) with different lengths are presented. In addition, a novel one-pot synthesis for the preparation of thermosensitive gold QDs is introduced. Gold NP solutions appear red colored due to their strong absorption in the visible range at ~ 520 nm. This absorption band is a result of surface plasmon resonance, which is caused by the coherent oscillation of conduction band electrons induced by an electromagnetic field. In contrast to spherical gold NPs, gold NRs show two surface plasmon bands due to their anisotropic shape, a transverse plasmon band at ~ 520 nm and a longitudinal plasmon band depending on the aspect ratio (length-to-width-ratio) of the gold NRs. If the size of the gold NPs decreases to values below ~ 2 nm, quantum-size confinement occurs and the surface plasmon band disappears. Additionally, the overlap between conduction band and valence band disappears, discrete electronic levels arise and a band gap is created. As a consequence of quantum confinement, the gold QDs show photoluminescence (PL) upon UV-irradiation. The gold QDs synthesized via the one-pot synthesis exhibit a broadband luminescence between 500 nm and 800 nm. The luminescence properties (emission peak, quantum yield, lifetime) strongly depend on the synthetic parameters like reaction temperature, stoichiometry and the surface ligand. Gold NRs and gold QDs were incoroporated into different polymers (e.g. cellulose triacetate). Polymer nanocomposite films showing optical anisotropy are obtainded by stretching polymer films containing gold NRs uniaxial in a tensile test machine. In addition to the optical characterization of gold NRs and QDs, their thermal behavior in solution as well as in different nanocomposites is studied. A shortening of the gold NRs or a transformation into spherical gold NP is observed, if the polymer nanocomposites containing gold NRs are heated above a temperature of 200 °C. The PL of the synthesized gold QDs strongly depends on the ambient temperature. An increase of PL quantum yield (QY) and PL lifetime occur, if the solutions are cooled. The best PL QY of 16.6 % was observed for octadecyl mercaptan capped gold QDs at room temperature, which could be improved to 28.6 % when cooling the solutions to -7 °C. Furthermore, optically anisotropic security labels containing gold NRs and thermosensitive security devices containing gold QDs are developed. Due to their unique optical properties, gold NRs and QDs are interesting candidates for optoelectronical as well as data storage devices and medical applications like biomedical imaging or cancer therapy. KW - Gold KW - Nanopartikel KW - Quantenpunkte KW - Nanostäbchen KW - Oberflächenplasmonenlasmonen KW - gold KW - nanoparticles KW - quantum dots KW - nanorods KW - surface plasmons Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-66402 ER -