TY - JOUR A1 - Wang, Jing A1 - Fritzsch, Claire A1 - Bernarding, Johannes A1 - Krause, Thomas A1 - Mauritz, Karl-Heinz A1 - Brunetti, Maddalena A1 - Dohle, Christian T1 - Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects JF - Neurorehabilitation : an interdisciplinary journal N2 - BACKGROUND: Mirror therapy (MT) was found to improve motor function after stroke, but its neural mechanisms remain unclear, especially in single stroke patients. OBJECTIVES: The following imaging study was designed to compare brain activation patterns evoked by the mirror illusion in single stroke patients with normal subjects. METHODS: Fifteen normal volunteers and five stroke patients with severe arm paresis were recruited. Cerebral activations during movement mirroring by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Single-subject analysis was performed using SPM 8. RESULTS: For normal subjects, ten and thirteen subjects displayed lateralized cerebral activations evoked by the mirror illusion while moving their right and left hand respectively. The magnitude of this effect in the precuneus contralateral to the seen hand was not dependent on movement speed or subjective experience. Negative correlation of activation strength with age was found for the right hand only. The activation pattern in stroke patients is comparable to that of normal subjects and present in four out of five patients. CONCLUSIONS: In summary, the mirror illusion can elicit cerebral activation contralateral to the perceived hand in the majority of single normal subjects, but not in all of them. This is similar even in stroke patients with severe hemiparesis. KW - Movement KW - mirror illusion KW - imaging KW - mirror therapy KW - stroke Y1 - 2013 U6 - https://doi.org/10.3233/NRE-130999 SN - 1053-8135 SN - 1878-6448 VL - 33 IS - 4 SP - 593 EP - 603 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Wang, Jing A1 - Fritzsch, Claire A1 - Bernarding, Johannes A1 - Holtze, Susanne A1 - Mauritz, Karl-Heinz A1 - Brunetti, Maddalena A1 - Dohle, Christian T1 - A comparison of neural mechanisms in mirror therapy and movement observation therapy JF - Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine N2 - Objective: To compare lateralized cerebral activations elicited during self-initiated movement mirroring and observation of movements. Subjects: A total of 15 right-handed healthy subjects, age range 22-56 years. Methods: Functional imaging study comparing movement mirroring with movement observation, in both hands, in an otherwise identical setting. Imaging data were analysed using statistical parametric mapping software, with significance threshold set at p<0.01 (false discovery rate) and a minimum cluster size of 20 voxels. Results: Movement mirroring induced additional activation in primary and higher-order visual areas strictly contralateral to the limb seen by the subject. There was no significant difference of brain activity when comparing movement observation of somebody else's right hand with left hand. Conclusion: Lateralized cerebral activations are elicited by inversion of visual feedback (movement mirroring), but not by movement observation. KW - fMRI KW - mirror KW - movement KW - observation KW - precuneus Y1 - 2013 U6 - https://doi.org/10.2340/16501977-1127 SN - 1650-1977 VL - 45 IS - 4 SP - 410 EP - 413 PB - Foundation for Rehabilitation Information CY - Uppsala ER - TY - JOUR A1 - Fritzsch, Claire A1 - Wang, Jing A1 - dos Santos, Luara Ferreira A1 - Mauritz, Karl-Heinz A1 - Brunetti, Maddalena A1 - Dohle, Christian T1 - Different effects of the mirror illusion on motor and somatosensory processing JF - Restorative neurology and neuroscience N2 - Purpose: Mirror therapy can improve motor and sensory functions, but effects of the mirror illusion on primary motor and somatosensory cortex could not be established consistently. Methods: Fifteen right handed healthy volunteers performed or observed a finger-thumb opposition task. Cerebral activations during normal movement (NOR), mirrored movement (MIR) and movement observation (OBS) by means of a video chain were recorded with functional magnetic resonance imaging (fMRI). Activation sizes in movement > static conditions were identified using SPM8 (p < 0.001, unc.) and attributed to predefined areas employing the Anatomy toolbox 1.8. Laterality indices for the responsive areas were calculated on the basis of the number of activated voxels. Results: Relevant bilateral BOLD responses were found in primary motor (M1) and somatosensory (S1 - BA 2, 3b and 3a) cortex, premotor and parietal areas and V5. When comparing MIR to NOR, no significant change of contralateral activation in M1 was found, but clearly at S1 with differences between hands. Conclusion: The mirror illusion does not elicit immediate changes in motor areas, yet there is a direct effect on somatosensory areas, especially for left hand movements. These results suggest different effects of mirror therapy on processing and rehabilitation of motor and sensory function. KW - Movement KW - mirror KW - laterality KW - stroke KW - sensorimotor cortex Y1 - 2014 U6 - https://doi.org/10.3233/RNN-130343 SN - 0922-6028 SN - 1878-3627 VL - 32 IS - 2 SP - 269 EP - 280 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Jia, Weihan A1 - Anslan, Sten A1 - Chen, Fahu A1 - Cao, Xianyong A1 - Dong, Hailiang A1 - Dulias, Katharina A1 - Gu, Zhengquan A1 - Heinecke, Liv A1 - Jiang, Hongchen A1 - Kruse, Stefan A1 - Kang, Wengang A1 - Li, Kai A1 - Liu, Sisi A1 - Liu, Xingqi A1 - Liu, Ying A1 - Ni, Jian A1 - Schwalb, Antje A1 - Stoof-Leichsenring, Kathleen R. A1 - Shen, Wei A1 - Tian, Fang A1 - Wang, Jing A1 - Wang, Yongbo A1 - Wang, Yucheng A1 - Xu, Hai A1 - Yang, Xiaoyan A1 - Zhang, Dongju A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era. KW - Sedimentary ancient DNA (sedaDNA) KW - Tibetan Plateau KW - Environmental DNA KW - Taphonomy KW - Ecosystem KW - Biodiversity KW - Paleoecology KW - Paleogeography Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107703 SN - 0277-3791 SN - 1873-457X VL - 293 PB - Elsevier CY - Oxford ER -