TY - JOUR A1 - Metz, Johannes A1 - Tielboerger, Katja T1 - Spatial and temporal aridity gradients provide poor proxies for plant-plant interactions under climate change: a large-scale experiment JF - Functional ecology : an official journal of the British Ecological Society N2 - 1. Plant-plant interactions may critically modify the impact of climate change on plant communities. However, the magnitude and even direction of potential future interactions remains highly debated, especially for water-limited ecosystems. Predictions range from increasing facilitation to increasing competition with future aridification. 2. The different methodologies used for assessing plant-plant interactions under changing environmental conditions may affect the outcome but they are not equally represented in the literature. Mechanistic experimental manipulations are rare compared with correlative approaches that infer future patterns from current observations along spatial climatic gradients. 3. Here, we utilize a unique climatic gradient in combination with a large-scale, long-term experiment to test whether predictions about plant-plant interactions yield similar results when using experimental manipulations, spatial gradients or temporal variation. We assessed shrub-annual interactions in three different sites along a natural rainfall gradient (spatial) during 9 years of varying rainfall (temporal) and 8 years of dry and wet manipulations of ambient rainfall (experimental) that closely mimicked regional climate scenarios. 4. The results were fundamentally different among all three approaches. Experimental water manipulations hardly altered shrub effects on annual plant communities for the assessed fitness parameters biomass and survival. Along the spatial gradient, shrub effects shifted from clearly negative to mildly facilitative towards drier sites, whereas temporal variation showed the opposite trend: more negative shrub effects in drier years. 5. Based on our experimental approach, we conclude that shrub-annual interaction will remain similar under climate change. In contrast, the commonly applied space-for-time approach based on spatial gradients would have suggested increasing facilitative effects with climate change. We discuss potential mechanisms governing the differences among the three approaches. 6. Our study highlights the critical importance of long-term experimental manipulations for evaluating climate change impacts. Correlative approaches, for example along spatial or temporal gradients, may be misleading and overestimate the response of plant-plant interactions to climate change. KW - annual plant communities KW - climate manipulation KW - competition KW - facilitation KW - Mediterranean shrubland KW - nurse plant KW - rainfall gradient KW - Sarcopoterium spinosum KW - semi-arid KW - stress-gradient hypothesis Y1 - 2016 U6 - https://doi.org/10.1111/1365-2435.12599 SN - 0269-8463 SN - 1365-2435 VL - 30 SP - 20 EP - 29 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bilton, Mark C. A1 - Metz, Johannes A1 - Tielboerger, Katja T1 - Climatic niche groups: A novel application of a common assumption predicting plant community response to climate change JF - Perspectives in plant ecology, evolution and systematics N2 - Defining species by their climatic niche is the simple and intuitive principle underlying Bioclimatic Envelope Model (BEM) predictions for climate change effects. However, these correlative models are often criticised for neglecting many ecological processes. Here, we apply the same niche principle to entire communities within a medium/long-term climate manipulation study, where ecological processes are inherently included. In a nine generation study in Israel, we manipulated rainfall (Drought -30%; Irrigation +30%; Control natural rainfall) at two sites which differ chiefly in rainfall quantity and variability. We analysed community responses to the manipulations by grouping species based on their climatic rainfall niche. These responses were compared to analyses based on single species, total densities, and commonly used taxonomic groupings. Climate Niche Groups yielded clear and consistent results: within communities, those species distributed in drier regions performed relatively better in the drought treatment, and those from wetter climates performed better when irrigated. In contrast, analyses based on other principles revealed little insight into community dynamics. Notably, most relationships were weaker at the drier, more variable site, suggesting that enhanced adaptation to variability may buffer climate change impacts. We provide robust experimental evidence that using climatic niches commonly applied in BEMs is a valid approach for eliciting community changes in response to climate change. However, we also argue that additional empirical information needs to be gathered using experiments in situ to correctly assess community vulnerability. Climatic Niche Groups used in this way, may therefore provide a powerful tool and directional testing framework to generalise and compare climate change impacts across habitats. (C) 2016 The Authors. Published by Elsevier GmbH. KW - Annual plant communities KW - Bioclimatic envelope modelling KW - Climate change manipulations KW - Experimental evidence KW - Plant functional groups KW - Rainfall niche Y1 - 2016 U6 - https://doi.org/10.1016/j.ppees.2016.02.006 SN - 1433-8319 VL - 19 SP - 61 EP - 69 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Makowicz, Amber M. A1 - Tiedemann, Ralph A1 - Steele, Rachel N. A1 - Schlupp, Ingo T1 - Kin Recognition in a Clonal Fish, Poecilia formosa JF - PLoS one N2 - Relatedness strongly influences social behaviors in a wide variety of species. For most species, the highest typical degree of relatedness is between full siblings with 50% shared genes. However, this is poorly understood in species with unusually high relatedness between individuals: clonal organisms. Although there has been some investigation into clonal invertebrates and yeast, nothing is known about kin selection in clonal vertebrates. We show that a clonal fish, the Amazon molly (Poecilia formosa), can distinguish between different clonal lineages, associating with genetically identical, sister clones, and use multiple sensory modalities. Also, they scale their aggressive behaviors according to the relatedness to other females: they are more aggressive to non-related clones. Our results demonstrate that even in species with very small genetic differences between individuals, kin recognition can be adaptive. Their discriminatory abilities and regulation of costly behaviors provides a powerful example of natural selection in species with limited genetic diversity. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0158442 SN - 1932-6203 VL - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Lah, Ljerka A1 - Trense, Daronja A1 - Benke, Harald A1 - Berggren, Per A1 - Gunnlaugsson, Porvaldur A1 - Lockyer, Christina A1 - Öztürk, Ayaka A1 - Öztürk, Bayram A1 - Pawliczka, Iwona A1 - Roos, Anna A1 - Siebert, Ursula A1 - Skora, Krzysztof A1 - Vikingsson, Gisli A1 - Tiedemann, Ralph T1 - Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise JF - PLoS one N2 - The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymor-phisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0162792 SN - 1932-6203 VL - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Zhu, Fangjun A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors JF - PLoS one N2 - The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of erα in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0156209 SN - 1932-6203 VL - 11 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Marrone, F. A1 - Havenstein, Katja A1 - Tiedemann, Ralph A1 - Ketmaier, V. T1 - Identification and characterization of five polymorphic microsatellite loci in the freshwater copepod Hemidiaptomus gurneyi (Copepoda: Calanoida: Diaptomidae) JF - The Italian journal of zoology N2 - Hemidiaptomus diaptomid copepods are known to be excellent biological indicators for the highly biodiverse crustacean communities inhabiting Mediterranean temporary ponds (MTPs), an endangered inland water habitat whose conservation is considered a priority according to the "Habitat Directive" of the European Union. This study reports on the characterization of five polymorphic microsatellite loci in Hemidiaptomus gurneyi, to be used as markers for fine-scale studies on the population genetic structure and metapopulation dynamics of a typical and obligate MTP dweller. The five selected loci proved to be polymorphic in the species, with three to five polymorphic loci per studied population. Overall, mean heterozygosity scored for all loci and populations was lower than that reported for the few other diaptomid species for which microsatellite loci have been to date described; this is possibly due to the intrinsically fragmented and isolated peculiar habitat inhabited by the species. Furthermore, the presence of indels within the flanking regions of selected loci was scored. This study, albeit confirming the technical difficulties in finding proper microsatellite markers in copepods, provides for the first time a set of useful polymorphic microsatellite loci for a Hemidiaptomus species, thus allowing the realization of fine-scale phylogeographic and population genetics studies of this flagship crustacean taxon for MTPs. KW - Mediterranean temporary ponds KW - diaptomid copepods KW - SSRs Y1 - 2016 U6 - https://doi.org/10.1080/11250003.2015.1126363 SN - 1125-0003 SN - 1748-5851 VL - 83 SP - 146 EP - 150 PB - Springer CY - Abingdon ER - TY - JOUR A1 - Lah, Ljerka A1 - Trense, Daronja A1 - Benke, Harald A1 - Berggren, Per A1 - Gunnlaugsson, Þorvaldur A1 - Lockyer, Christina A1 - Öztürk, Ayaka A1 - Öztürk, Bayram A1 - Pawliczka, Iwona A1 - Roos, Anna A1 - Siebert, Ursula A1 - Skóra, Krzysztof A1 - Víkingsson, Gísli A1 - Tiedemann, Ralph T1 - Spatially Explicit Analysis of Genome-Wide SNPs Detects Subtle Population Structure in a Mobile Marine Mammal, the Harbor Porpoise JF - PLoS one N2 - The population structure of the highly mobile marine mammal, the harbor porpoise (Phocoena phocoena), in the Atlantic shelf waters follows a pattern of significant isolation-by-distance. The population structure of harbor porpoises from the Baltic Sea, which is connected with the North Sea through a series of basins separated by shallow underwater ridges, however, is more complex. Here, we investigated the population differentiation of harbor porpoises in European Seas with a special focus on the Baltic Sea and adjacent waters, using a population genomics approach. We used 2872 single nucleotide polymorphisms (SNPs), derived from double digest restriction-site associated DNA sequencing (ddRAD-seq), as well as 13 microsatellite loci and mitochondrial haplotypes for the same set of individuals. Spatial principal components analysis (sPCA), and Bayesian clustering on a subset of SNPs suggest three main groupings at the level of all studied regions: the Black Sea, the North Atlantic, and the Baltic Sea. Furthermore, we observed a distinct separation of the North Sea harbor porpoises from the Baltic Sea populations, and identified splits between porpoise populations within the Baltic Sea. We observed a notable distinction between the Belt Sea and the Inner Baltic Sea sub-regions. Improved delineation of harbor porpoise population assignments for the Baltic based on genomic evidence is important for conservation management of this endangered cetacean in threatened habitats, particularly in the Baltic Sea proper. In addition, we show that SNPs outperform microsatellite markers and demonstrate the utility of RAD-tags from a relatively small, opportunistically sampled cetacean sample set for population diversity and divergence analysis. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0162792 SN - 1932-6203 VL - 11 IS - 10 PB - PLoS CY - Lawrence, Kan. ER - TY - JOUR A1 - Zhu, Fangjun A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Sequence Evolution and Expression of the Androgen Receptor and Other Pathway-Related Genes in a Unisexual Fish, the Amazon Molly, Poecilia formosa, and Its Bisexual Ancestors JF - PLoS one N2 - The all-female Amazon molly (Poecilia formosa) originated from a single hybridization of two bisexual ancestors, Atlantic molly (Poecilia mexicana) and sailfin molly (Poecilia latipinna). As a gynogenetic species, the Amazon molly needs to copulate with a heterospecific male, but the genetic information of the sperm-donor does not contribute to the next generation, as the sperm only acts as the trigger for the diploid eggs’ embryogenesis. Here, we study the sequence evolution and gene expression of the duplicated genes coding for androgen receptors (ars) and other pathway-related genes, i.e., the estrogen receptors (ers) and cytochrome P450, family19, subfamily A, aromatase genes (cyp19as), in the Amazon molly, in comparison to its bisexual ancestors. Mollies possess–as most other teleost fish—two copies of the ar, er, and cyp19a genes, i.e., arα/arβ, erα/erβ1, and cyp19a1 (also referred as cyp19a1a)/cyp19a2 (also referred to as cyp19a1b), respectively. Non-synonymous single nucleotide polymorphisms (SNPs) among the ancestral bisexual species were generally predicted not to alter protein function. Some derived substitutions in the P. mexicana and one in P. formosa are predicted to impact protein function. We also describe the gene expression pattern of the ars and pathway-related genes in various tissues (i.e., brain, gill, and ovary) and provide SNP markers for allele specific expression research. As a general tendency, the levels of gene expression were lowest in gill and highest in ovarian tissues, while expression levels in the brain were intermediate in most cases. Expression levels in P. formosa were conserved where expression did not differ between the two bisexual ancestors. In those cases where gene expression levels significantly differed between the bisexual species, P. formosa expression was always comparable to the higher expression level among the two ancestors. Interestingly, erβ1 was expressed neither in brain nor in gill in the analyzed three molly species, which implies a more important role of erα in the estradiol synthesis pathway in these tissues. Furthermore, our data suggest that interactions of steroid-signaling pathway genes differ across tissues, in particular the interactions of ars and cyp19as. Y1 - 2016 U6 - https://doi.org/10.1371/JOURNAL.PONE.0156209 SN - 1932-6203 VL - 11 IS - 6 PB - PLoS CY - Lawrence, Kan. ER - TY - JOUR A1 - Klauschies, Toni A1 - Vasseur, David A. A1 - Gaedke, Ursula T1 - Trait adaptation promotes species coexistence in diverse predator and prey communities JF - Ecology and evolution N2 - Species can adjust their traits in response to selection which may strongly influence species coexistence. Nevertheless, current theory mainly assumes distinct and time-invariant trait values. We examined the combined effects of the range and the speed of trait adaptation on species coexistence using an innovative multispecies predator–prey model. It allows for temporal trait changes of all predator and prey species and thus simultaneous coadaptation within and among trophic levels. We show that very small or slow trait adaptation did not facilitate coexistence because the stabilizing niche differences were not sufficient to offset the fitness differences. In contrast, sufficiently large and fast trait adaptation jointly promoted stable or neutrally stable species coexistence. Continuous trait adjustments in response to selection enabled a temporally variable convergence and divergence of species traits; that is, species became temporally more similar (neutral theory) or dissimilar (niche theory) depending on the selection pressure, resulting over time in a balance between niche differences stabilizing coexistence and fitness differences promoting competitive exclusion. Furthermore, coadaptation allowed prey and predator species to cluster into different functional groups. This equalized the fitness of similar species while maintaining sufficient niche differences among functionally different species delaying or preventing competitive exclusion. In contrast to pre- vious studies, the emergent feedback between biomass and trait dynamics enabled supersaturated coexistence for a broad range of potential trait adaptation and parameters. We conclude that accounting for trait adaptation may explain stable and supersaturated species coexistence for a broad range of environmental conditions in natural systems when the absence of such adaptive changes would preclude it. Small trait changes, coincident with those that may occur within many natural populations, greatly enlarged the number of coexisting species. KW - Coadaptation KW - equalizing and stabilizing mechanisms KW - maintenance of functional diversity KW - niche and fitness differences KW - supersaturated species coexistence KW - trait convergence and divergence Y1 - 2016 U6 - https://doi.org/10.1002/ece3.2172 SN - 2045-7758 PB - John Wiley & Sons, Inc. ER - TY - JOUR A1 - Schmidt, Andreas A1 - Rabsch, Wolfgang A1 - Broeker, Nina K. A1 - Barbirz, Stefanie T1 - Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens JF - BMC microbiology N2 - Background Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production. KW - Salmonella Typhimurium KW - O-antigen KW - Tailspike protein KW - Bacteriophage KW - Phase variation KW - O-serotyping KW - Flow cytometry Y1 - 2016 U6 - https://doi.org/10.1186/s12866-016-0826-0 SN - 1471-2180 VL - 16 PB - BioMed Central CY - London ER -