TY - JOUR A1 - Polyvyanyy, Artem A1 - Garcia-Banuelos, Luciano A1 - Fahland, Dirk A1 - Weske, Mathias T1 - Maximal structuring of acyclic process models JF - The computer journal : a publication of the British Computer Society N2 - This article addresses the transformation of a process model with an arbitrary topology into an equivalent structured process model. In particular, this article studies the subclass of process models that have no equivalent well-structured representation but which, nevertheless, can be partially structured into their maximally-structured representation. The transformations are performed under a behavioral equivalence notion that preserves the observed concurrency of tasks in equivalent process models. The article gives a full characterization of the subclass of acyclic process models that have no equivalent well-structured representation, but do have an equivalent maximally-structured one, as well as proposes a complete structuring method. Together with our previous results, this article completes the solution of the process model structuring problem for the class of acyclic process models. KW - process modeling KW - structured process model KW - maximal structuring KW - model transformation KW - fully concurrent bisimulation Y1 - 2014 U6 - https://doi.org/10.1093/comjnl/bxs126 SN - 0010-4620 SN - 1460-2067 VL - 57 IS - 1 SP - 12 EP - 35 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Naujokat, Stefan A1 - Neubauer, Johannes A1 - Lamprecht, Anna-Lena A1 - Steffen, Bernhard A1 - Joerges, Sven A1 - Margaria, Tiziana T1 - Simplicity-first model-based plug-in development JF - Software : practice & experience N2 - In this article, we present our experience with over a decade of strict simplicity orientation in the development and evolution of plug-ins. The point of our approach is to enable our graphical modeling framework jABC to capture plug-in development in a domain-specific setting. The typically quite tedious and technical plug-in development is shifted this way from a programming task to the modeling level, where it can be mastered also by application experts without programming expertise. We show how the classical plug-in development profits from a systematic domain-specific API design and how the level of abstraction achieved this way can be further enhanced by defining adequate building blocks for high-level plug-in modeling. As the resulting plug-in models can be compiled and deployed automatically, our approach decomposes plug-in development into three phases where only the realization phase requires plug-in-specific effort. By using our modeling framework jABC, this effort boils down to graphical, tool-supported process modeling. Furthermore, we support the automatic completion of process sketches for executability. All this will be illustrated along the most recent plug-in-based evolution of the jABC framework, which witnessed quite some bootstrapping effects. KW - plug-ins KW - simplicity KW - domain-specific APIs KW - process modeling KW - bootstrapping KW - evolution KW - code generation KW - loose programming KW - dynamic service binding Y1 - 2014 U6 - https://doi.org/10.1002/spe.2243 SN - 0038-0644 SN - 1097-024X VL - 44 IS - 3 SP - 277 EP - 297 PB - Wiley-Blackwell CY - Hoboken ER -