TY - JOUR A1 - Wirth, Jonas A1 - Schacht, Julia A1 - Saalfrank, Peter A1 - Paulus, Beate T1 - Fluorination of the Hydroxylated alpha-Al2O3 (0001) and Its Implications for Water Adsorption: A Theoretical Study JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Fluorination of the hydroxylated alpha-Al2O3 (0001) surface is studied using periodic density functional theory calculations. On the basis of a hypothetical reaction substituting surface hydroxyl groups with fluorine atoms, we find surface fluorination to be strongly exergonic but kinetically hindered. Fluorinated surface areas turn out to be rather hydrophobic as compared to hydroxylated areas, suggesting fluorination as a potential route for tuning oxide surface properties such as hydrophilicity. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.5b10975 SN - 1932-7447 VL - 120 SP - 9713 EP - 9718 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Loncaric, Ivor A1 - Alducin, Maite A1 - Saalfrank, Peter A1 - Juaristi, J. I. T1 - Femtosecond-laser-driven molecular dynamics on surfaces: Photodesorption of molecular oxygen from Ag(110) JF - Physical review : B, Condensed matter and materials physics N2 - We simulate the femtosecond-laser-induced desorption dynamics of a diatomic molecule from a metal surface by including the effect of the electron and phonon excitations created by the laser pulse. Following previous models, the laser-induced surface excitation is treated through the two temperature model, while the multidimensional dynamics of the molecule is described by a classical Langevin equation, in which the friction and random forces account for the action of the heated electrons. In this work we propose the additional use of the generalized Langevin oscillator model to also include the effect of the energy exchange between the molecule and the heated surface lattice in the desorption dynamics. The model is applied to study the laser-induced desorption of O-2 from the Ag(110) surface, making use of a six-dimensional potential energy surface calculated within density functional theory. Our results reveal the importance of the phonon mediated process and show that, depending on the value of the electronic density in the surroundings of the molecule adsorption site, its inclusion can significantly enhance or reduce the desorption probabilities. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevB.93.014301 SN - 1098-0121 SN - 1550-235X VL - 93 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Scholz, Robert A1 - Floss, Gereon A1 - Saalfrank, Peter A1 - Füchsel, Gernot A1 - Loncaric, Ivor A1 - Juaristi, J. I. T1 - Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion JF - Physical review : B, Condensed matter and materials physics N2 - A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 x 2): CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevB.94.165447 SN - 2469-9950 SN - 2469-9969 VL - 94 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Loncaric, Ivor A1 - Alducin, Maite A1 - Saalfrank, Peter A1 - Inaki Juaristi, J. T1 - Femtosecond laser pulse induced desorption: A molecular dynamics simulation JF - Nature climate change N2 - In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which 02 is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results. (C) 2016 Elsevier B.V. All rights reserved. KW - Laser induced desorption KW - Molecular dynamics with friction KW - Local density friction approximation KW - Generalized Langevin oscillator model Y1 - 2016 U6 - https://doi.org/10.1016/j.nimb.2016.02.051 SN - 0168-583X SN - 1872-9584 VL - 382 SP - 114 EP - 118 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Titov, Evgenii A1 - Saalfrank, Peter T1 - Exciton Splitting of Adsorbed and Free 4-Nitroazobenzene Dimers: A Quantum Chemical Study JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - Molecular photoswitches such as azobenzenes, which undergo photochemical trans <-> cis isomerizations, are often mounted for possible applications on a surface and/or surrounded by other switches, for example, in self-assembled monolayers. This may suppress the isomerization cross section due to possible steric reasons, or, as recently speculated, by exciton coupling to. neighboring switches, leading to ultrafast electronic quenching (Gahl et al., J. Am. Chem. Soc. 2010, 132, 1831). The presence of exciton coupling has been anticipated from a blue shift of the optical absorption band, compared to molecules in solution. From the theory side the need arises to properly analyze and quantify the change of absorption spectra of interacting and adsorbed switches. In particular, suitable methods should be identified, and effects of intermolecule and molecule surface interactions on spectra should be disentangled. In this paper by means of time-dependent Hartree-Fock. (TD-HF), various flavors of time-dependent density functional theory (TD-DFT), and the correlated wave function based, coupled cluster (CC2) method we investigated the 4-nitroazobenzene molecule as an:example: The low-lying singlet excited states in the isolated trans monomer and dieter as well as their composites with a silicon pentamantane nanocluster, which serves also as a crude model for a silicon surface, were determined. As most important results we found that (i) HF, CC2, range-separated density functionals, or global hybrids with large amount of exact exchange are able to describe exciton (Davydov) splitting properly, while hybrids with small amount of exact exchange fail producing spurious charge transfer. (ii) The exciton splitting in a free dimer would lead to a blue shift of the absorption signal; however, this effect is almost nullified or even overcompensated by the shift arising from van der Waals interactions between the two molecules. (iii) Adsorption on the Si "surface" leads to a further, strong red shift for the present system. (iv) At a next-nearest neighbor distance (of similar to 3.6 angstrom), the exciton splitting is similar to 0.3 eV, with or without "surface", suggesting a rapid quenching of the molecular pi ->pi* excitation. At larger distances, exciton splitting decreases rapidly. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpca.5b10376 SN - 1089-5639 VL - 120 SP - 3055 EP - 3070 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kulesza, Alexander Jan A1 - Titov, Evgenii A1 - Daly, Steven A1 - Wlodarczyk, Radoslaw A1 - Megow, Jörg A1 - Saalfrank, Peter A1 - Choi, Chang Min A1 - MacAleese, Luke A1 - Antoine, Rodolphe A1 - Dugourd, Philippe T1 - Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas-phase absorption properties with quantum-chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest-such as xanthene analogues. We, therefore, face their nano-and picosecond laser-induced photofragmentation with excited-state computations by using the CC2 method and time-dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree-Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher-lying excited states conforms to intense excited-to-excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues. KW - density functional calculations KW - CC2 calculations KW - multiphoton processes KW - photofragmentation KW - xanthenes Y1 - 2016 U6 - https://doi.org/10.1002/cphc.201600650 SN - 1439-4235 SN - 1439-7641 VL - 17 SP - 3129 EP - 3138 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Titov, Evgenii A1 - Granucci, Giovanni A1 - Goetze, Jan Philipp A1 - Persico, Maurizio A1 - Saalfrank, Peter T1 - Dynamics of Azobenzene Dimer Photoisomerization: Electronic and Steric Effects JF - The journal of physical chemistry letters N2 - While azobenzenes readily photoswitch in solution, their photoisomerization in densely packed self-assembled monolayers (SAMs) can be suppressed. Reasons for this can be steric hindrance and/or electronic quenching, e.g., by exciton coupling. We address these possibilities by means of nonadiabatic molecular dynamics with trajectory surface hopping calculations, investigating the trans -> cis isomerization of azobenzene after excitation into the pi pi* absorption band. We consider a free monomer, an isolated dimer and a dimer embedded in a SAM-like environment of additional azobenzene molecules, imitating in this way the gradual transition from an unconstrained over an electronically coupled to an electronically coupled and sterically hindered, molecular switch. Our simulations reveal that in comparison to the single molecule the quantum yield of the trans -> cis photoisomerization is similar for the isolated dimer, but greatly reduced in the sterically constrained situation. Other implications of dimerization and steric constraints are also discussed. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpciett.6b01401 SN - 1948-7185 VL - 7 SP - 3591 EP - 3596 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schönborn, Jan Boyke A1 - Saalfrank, Peter A1 - Klamroth, Tillmann T1 - Controlling the high frequency response of H-2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H-2 treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a "non-harmonic" response of H2 to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization. (C) 2016 AIP Publishing LLC. Y1 - 2016 U6 - https://doi.org/10.1063/1.4940316 SN - 0021-9606 SN - 1089-7690 VL - 144 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - White, Alec F. A1 - Heide, Chiara Josephine A1 - Saalfrank, Peter A1 - Head-Gordon, Martin A1 - Luppi, Eleonora T1 - Computation of high-harmonic generation spectra of the hydrogen molecule using time-dependent configuration-interaction JF - Molecular physics N2 - Here we apply and expand the knowledge developed in the case of the H atom to describe high-harmonic generation (HHG) for the H-2 molecule by using time-dependent configuration interaction with single excitations. The implications of using a finite atomic orbital basis set and the impact of a heuristic lifetime model which addresses ionisation losses are discussed. We also examine the influence of the angular momentum of the basis on the computed HHG spectra. Moreover, we discuss the impact of adding diffuse functions and ghost atoms in different geometrical configurations around the molecule. The effects of these additional centres on the HHG spectra are correlated with the physical interpretation of this nonlinear optical phenomenon as given by the three-step model, relating the maximal radial extent of the electron as predicted by the model to the radial extent of the Gaussian basis sets. [GRAPHICS] . KW - High-harmonic generation KW - strong field KW - time-dependent configuration interaction Y1 - 2016 U6 - https://doi.org/10.1080/00268976.2015.1119900 SN - 0026-8976 SN - 1362-3028 VL - 114 SP - 947 EP - 956 PB - Springer CY - Abingdon ER - TY - JOUR A1 - Boese, Adrian Daniel A1 - Saalfrank, Peter T1 - CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - In this work, we study the adsorption of CO from low to high coverage at a defect-free NaCl(100) surface by means of duster and periodic models, using highly accurate wave function-based QM:QM embedding as well as density functional theory. At low coverages, the most accurate methods predict a zero-point-corrected adsorption energy of around 13 kJ/mol, and the CO molecules are found to be oriented perpendicular to the surface. At higher coverages, lower-energy phases with nonparallel/upright, tilted orientations emerge. Besides the well-known p(2 x 1)/antiparallel phase (T/A), we find other tilted phases (tilted/irregular, T/I; tilted/spiral, T/S) as local minima. Vibrational frequencies for CO adsorbed on NaCl(100) and Davydov splittings of the C-O stretch vibration are also determined. The IR spectra are characteristic fingerprints for the relative orientation of CO molecules and may therefore be used as sensitive probes to distinguish parallel/upright from various tilted adsorption phases. Y1 - 2016 U6 - https://doi.org/10.1021/acs.jpcc.6b03726 SN - 1932-7447 VL - 120 SP - 12637 EP - 12653 PB - American Chemical Society CY - Washington ER -