TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background The importance of trunk muscle strength (TMS) for physical fitness and athletic performance has been demonstrated by studies reporting significant correlations between those capacities. However, evidence-based knowledge regarding the magnitude of correlations between TMS and proxies of physical fitness and athletic performance as well as potential effects of core strength training (CST) on TMS, physical fitness and athletic performance variables is currently lacking for trained individuals. Objective The aims of this systematic review and meta-analysis were to quantify associations between variables of TMS, physical fitness and athletic performance and effects of CST on these measures in healthy trained individuals. Data Sources PubMed, Web of Science, and SPORTDiscus were systematically screened from January 1984 to March 2015. Study Eligibility Criteria Studies were included that investigated healthy trained individuals aged 16-44 years and tested at least one measure of TMS, muscle strength, muscle power, balance, and/or athletic performance. Results Small-sized relationships of TMS with physical performance measures (-0.05 <= r <= 0.18) were found in 15 correlation studies. Sixteen intervention studies revealed large effects of CST on measures of TMS (SMD = 1.07) but small-to-medium-sized effects on proxies of physical performance (0 <= SMD <= 0.71) compared with no training or regular training only. The methodological quality of CST studies was low (median PEDro score = 4). Conclusions Our findings indicate that TMS plays only a minor role for physical fitness and athletic performance in trained individuals. In fact, CST appears to be an effective means to increase TMS and was associated with only limited gains in physical fitness and athletic performance measures when compared with no or only regular training. Y1 - 2016 U6 - https://doi.org/10.1007/s40279-015-0426-4 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 401 EP - 419 PB - Springer CY - Northcote ER - TY - JOUR A1 - Hammami, Raouf A1 - Granacher, Urs A1 - Makhlouf, Issam A1 - Behm, David George A1 - Chaouachi, Anis T1 - SEQUENCING EFFECTS OF BALANCE AND PLYOMETRIC TRAINING ON PHYSICAL PERFORMANCE IN YOUTH SOCCER ATHLETES JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Balance training may have a preconditioning effect on subsequent power training with youth. There are no studies examining whether the sequencing of balance and plyometric training has additional training benefits. The objective was to examine the effect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes. Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPT) or 4 weeks of plyometric training proceeded by 4 weeks of balance training (PBT). Testing was conducted pre- and posttraining and included medicine ball throw; horizontal and vertical jumps; reactive strength; leg stiffness; agility; 10-, 20-, and 30-m sprints; Standing Stork balance test; and Y-Balance test. Results indicated that BPT provided significantly greater improvements with reactive strength index, absolute and relative leg stiffness, triple hop test, and a trend for the Y-Balance test (p = 0.054) compared with PBT. Although all other measures had similar changes for both groups, the average relative improvement for the BPT was 22.4% (d = 1.5) vs. 15.0% (d = 1.1) for the PBT. BPT effect sizes were greater with 8 of 13 measures. In conclusion, although either sequence of BPT or PBT improved jumping, hopping, sprint acceleration, and Standing Stork and Y-Balance, BPT initiated greater training improvements in reactive strength index, absolute and relative leg stiffness, triple hop test, and the Y-Balance test. BPT may provide either similar or superior performance enhancements compared with PBT. KW - children KW - adolescents KW - power KW - jumps KW - sprints Y1 - 2016 U6 - https://doi.org/10.1519/JSC.0000000000001425 SN - 1064-8011 SN - 1533-4287 VL - 30 SP - 3278 EP - 3289 PB - Elsevier CY - Philadelphia ER - TY - JOUR A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations: Does Whole-Body Fatigue Matter? JF - PLoS one N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single-(ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 +/- 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2-21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9-2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3-4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9-3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0147392 SN - 1932-6203 VL - 11 SP - 1379 EP - 1384 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations BT - Does Whole-Body Fatigue Matter? JF - PLoS one N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0147392 SN - 1932-6203 VL - 11 IS - 1 SP - 1 EP - 15 PB - PLoS CY - Lawrence, Kan. ER - TY - GEN A1 - Beurskens, Rainer A1 - Haeger, Matthias A1 - Kliegl, Reinhold A1 - Roecker, Kai A1 - Granacher, Urs T1 - Postural Control in Dual-Task Situations BT - Does Whole-Body Fatigue Matter? N2 - Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 303 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-96638 SP - 1 EP - 15 ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Borde, Ron A1 - Gube, M. A1 - Bruhn, S. A1 - Behm, David George A1 - Granacher, Urs T1 - Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability JF - Learning and individual differences N2 - Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 +/- 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band (R) Stability Trainer, Togu (c) Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5%, P<0.05, d=0.86), 10-20-m sprint time (3%, P<0.05, d=2.56), and kicking performance (1%, P<0.01, d=1.28). No significant Groupxtest interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training. KW - Elite sports KW - jumping KW - agility KW - sprint KW - ball speed KW - electromyography Y1 - 2016 U6 - https://doi.org/10.1111/sms.12403 SN - 0905-7188 SN - 1600-0838 VL - 26 SP - 48 EP - 56 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking: Effects of Cognitive versus Motor Interference in Young Adults JF - Neural plasticity N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single-and dual-task walking. We had 12 young adults (23.8 +/- 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. Y1 - 2016 U6 - https://doi.org/10.1155/2016/8032180 SN - 2090-5904 SN - 1687-5443 PB - Hindawi CY - London ER - TY - JOUR A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking BT - Effects of Cognitive versus Motor Interference in Young Adults JF - Neural plasticity N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. Y1 - 2016 U6 - https://doi.org/10.1155/2016/8032180 VL - 2016 SP - 1 EP - 9 PB - Hindawi CY - New York ER - TY - GEN A1 - Beurskens, Rainer A1 - Steinberg, Fabian A1 - Antoniewicz, Franziska A1 - Wolff, Wanja A1 - Granacher, Urs T1 - Neural Correlates of Dual-Task Walking BT - Effects of Cognitive versus Motor Interference in Young Adults N2 - Walking while concurrently performing cognitive and/or motor interference tasks is the norm rather than the exception during everyday life and there is evidence from behavioral studies that it negatively affects human locomotion. However, there is hardly any information available regarding the underlying neural correlates of single- and dual-task walking. We had 12 young adults (23.8 ± 2.8 years) walk while concurrently performing a cognitive interference (CI) or a motor interference (MI) task. Simultaneously, neural activation in frontal, central, and parietal brain areas was registered using a mobile EEG system. Results showed that the MI task but not the CI task affected walking performance in terms of significantly decreased gait velocity and stride length and significantly increased stride time and tempo-spatial variability. Average activity in alpha and beta frequencies was significantly modulated during both CI and MI walking conditions in frontal and central brain regions, indicating an increased cognitive load during dual-task walking. Our results suggest that impaired motor performance during dual-task walking is mirrored in neural activation patterns of the brain. This finding is in line with established cognitive theories arguing that dual-task situations overstrain cognitive capabilities resulting in motor performance decrements. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 291 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90742 SP - 1 EP - 9 ER - TY - GEN A1 - Hortobagyi, Tibor A1 - Lesinski, Melanie A1 - Gabler, Martijn A1 - VanSwearingen, Jessie M. A1 - Malatesta, Davide A1 - Granacher, Urs T1 - Gait Speed: A Systematic Review and Meta-Analysis (vol 45, pg 1627, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0498-9 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 453 EP - 453 PB - Springer CY - Northcote ER -