TY - JOUR A1 - Fritz, Michael A1 - Wolter, Juliane A1 - Rudaya, Natalia A1 - Palagushkina, Olga A1 - Nazarova, Larisa B. A1 - Obu, Jaroslav A1 - Rethemeyer, Janet A1 - Lantuit, Hugues A1 - Wetterich, Sebastian T1 - Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada) JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, delta C-13), stable water isotopes (delta O-18, delta D), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUS) correspond to the main stages of deposition (1) in a thermokarst lake (SW : 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene. (C) 2016 Elsevier Ltd. All rights reserved. KW - Permafrost peatlands KW - Arctic KW - Thermokarst KW - Talik KW - Ice-wedge polygon KW - Pollen KW - Diatoms KW - Plant macrofossils KW - Stable water isotopes KW - Deuterium excess Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.02.008 SN - 0277-3791 VL - 147 SP - 279 EP - 297 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Radosavljevic, Boris A1 - Lantuit, Hugues A1 - Pollard, Wayne A1 - Overduin, Pier Paul A1 - Couture, Nicole A1 - Sachs, Torsten A1 - Helm, Veit A1 - Fritz, Michael T1 - Erosion and Flooding-Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada JF - Estuaries and coasts : journal of the Estuarine Research Federation N2 - Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from -5.5 to 2.7 mI double dagger a(-1) (mean -0.6 mI double dagger a(-1)). Mean coastal retreat decreased from -0.6 mI double dagger a(-1) to -0.5 mI double dagger a(-1), for 1952-1970 and 1970-2000, respectively, and increased to -1.3 mI double dagger a(-1) in the period 2000-2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding. KW - Arctic KW - Coastal erosion KW - UNESCO KW - Vulnerability mapping KW - Permafrost coasts Y1 - 2016 U6 - https://doi.org/10.1007/s12237-015-0046-0 SN - 1559-2723 SN - 1559-2731 VL - 39 SP - 900 EP - 915 PB - Springer CY - New York ER -