TY - THES A1 - Gromelski, Sandra T1 - Wechselwirkung zwischen Lipiden und DNA : auf dem Weg zum künstlichen Virus T1 - Interaction between lipids and DNA : on the way to the artificial virus N2 - Weltweit versuchen Wissenschaftler, künstliche Viren für den Gentransfer zu konstruieren, die nicht reproduktionsfähig sind. Diese sollen die Vorteile der natürlichen Viren besitzen (effizienter Transport von genetischem Material), jedoch keine Antigene auf ihrer Oberfläche tragen, die Immunreaktionen auslösen. Ziel dieses Projektes ist es, einen künstlichen Viruspartikel herzustellen, dessen Basis eine Polyelektrolytenhohlkugel bildet, die mit einer Lipiddoppelschicht bedeckt ist. Um intakte Doppelschichten zu erzeugen, muss die Wechselwirkung zwischen Lipid und Polyelektrolyt (z.B. DNA) verstanden und optimiert werden. Dazu ist es notwendig, die strukturelle Grundlage der Interaktion aufzuklären. Positiv geladene Lipide gehen zwar starke Wechselwirkungen mit der negativ geladenen DNA ein, sie wirken jedoch toxisch auf biologische Zellen. In der vorliegenden Arbeit wurde daher die durch zweiwertige Kationen vermittelte Kopplung von genomischer oder Plasmid-DNA an zwitterionische oder negativ geladene Phospholipide an zwei Modellsystemen untersucht. 1. Modellsystem: Lipidmonoschicht an der Wasser/Luft-Grenzfläche Methoden: Filmwaagentechnik in Kombination mit IR-Spektroskopie (IRRAS), Röntgenreflexion (XR), Röntgendiffraktion (GIXD), Brewsterwinkel-Mikroskopie (BAM), Röntgenfluoreszenz (XRF) und Oberflächenpotentialmessungen Resultate: A) Die Anwesenheit der zweiwertigen Kationen Ba2+, Mg2+, Ca2+ oder Mn2+ in der Subphase hat keinen nachweisbaren Einfluss auf die Struktur der zwitterionischen DMPE- (1,2-Dimyristoyl-phosphatidyl-ethanolamin) Monoschicht. B) In der Subphase gelöste DNA adsorbiert nur in Gegenwart dieser Kationen an der DMPE-Monoschicht. C) Sowohl die Adsorption genomischer Kalbsthymus-DNA als auch der Plasmid-DNA pGL3 bewirkt eine Reduktion des Neigungswinkels der Alkylketten, die auf einen veränderten Platzbedarf der Kopfgruppe zurückzuführen ist. Durch die Umorientierung der Kopfgruppe wird die elektrostatische Wechselwirkung zwischen den positiv geladenen Stickstoffatomen der Lipidkopfgruppen und den negativ geladenen DNA-Phosphaten erhöht. D) Die adsorbierte DNA weist eine geordnete Struktur auf, wenn sie durch Barium-, Magnesium-, Calcium- oder Manganionen komplexiert ist. Der Abstand zwischen parallelen DNA-Strängen hängt dabei von der Größe der DNA-Fragmente sowie von der Art des Kations ab. Die größten Abstände ergeben sich mit Bariumionen, gefolgt von Magnesium- und Calciumionen. Die kleinsten DNA-Abstände werden durch Komplexierung mit Manganionen erhalten. Diese Ionenreihenfolge stellt sich sowohl für genomische DNA als auch für Plasmid-DNA ein. E) Die DNA-Abstände werden durch die Kompression des Lipidfilms nicht beeinflusst. Zwischen der Lipidmonoschicht und der adsorbierten DNA besteht demnach nur eine schwache Wechselwirkung. Offensichtlich befindet sich die durch zweiwertige Kationen komplexierte DNA als weitgehend eigenständige Schicht unter dem Lipidfilm. 2. Modellsystem: Lipiddoppelschicht an der fest/flüssig-Grenzfläche Methoden: Neutronenreflexion (NR) und Quarzmikrowaage (QCM-D) Resultate: A) Das zwitterionische Phospholipid DMPC (1,2-Dimyristoyl-phosphatidylcholin) bildet keine Lipiddoppelschicht auf planaren Polyelektrolytmultischichten aus, deren letzte Lage das positiv geladene PAH (Polyallylamin) ist. B) Hingegen bildet DMPC auf dem negativ geladenen PSS (Polystyrolsulfonat) eine Doppelschicht aus, die jedoch Defekte aufweist. C) Eine Adsorption von genomischer Kalbsthymus-DNA auf dieser Lipidschicht findet nur in Gegenwart von Calciumionen statt. Andere zweiwertige Kationen wurden nicht untersucht. D) Das negativ geladene Phospholipid DLPA (1,2-Dilauryl-phosphatidsäure) bildet auf dem positiv geladenen PAH eine Lipiddoppelschicht aus, die Defekte aufweist. E) DNA adsorbiert ebenfalls erst in Anwesenheit von Calciumionen in der Lösung an die DLPA-Schicht. F) Durch die Zugabe von EDTA (Ethylendiamintetraessigsäure) werden die Calciumionen dem DLPA/DNA-Komplex entzogen, wodurch dieser dissoziiert. Demnach ist die calciuminduzierte Bildung dieser Komplexe reversibel. N2 - All over the world scientists are trying to engineer artificial viruses, which do not replicate, for gene delivery. These artificial viruses should have the advantages of natural viruses such as efficient transport of genetic material, but they should not carry antigens, which cause immune reactions, on their top portion. The aim of this project is to develop an artificial virus particle that is based on a polyelectrolyte hollow capsule which is covered by a lipid bilayer. To create intact bilayers, it is crucial to understand and optimize the interaction between lipids and polyelectrolytes (e. g. DNA). Therefore the structural basis of that interaction must be elucidated. Positively charged lipids interact strongly with the negatively charged DNA but they cause toxic reactions in biological cells. Hence the present work used two model systems to study the coupling of genomic or plasmid DNA to zwitterionic or negatively charged phospholipids induced by divalent cations. 1. Model system: Lipid monolayer at the air/water-interface Methods: Langmuir filmbalance in combination with IR-spectroscopy (IRRAS), X-ray reflectometry (XR), X-ray diffraction (GIXD), Brewster angle microscopy (BAM), X-ray fluorescence (XRF), and surface potential measurements Results: A) The presence of the divalent cations Ba2+, Mg2+, Ca2+ or Mn2+ in the subphase has no traceable influence on the structure of a zwitterionic DMPE (1,2-dimyristoyl-phosphatidyl-ethanolamine) monolayer. B) DNA which is dissolved in the subphase adsorbs to the DMPE-monolayer only if divalent cations are present. C) The adsorption of genomic calf thymus DNA as well as of the plasmid DNA pGL3 causes a reduction of the tilt angle of the lipid alkyl chains. The tilt reduction can be ascribed to a change in the space required by the lipid head group. This change in head group orientation increases the electrostatic interaction between the positively charged nitrogen atoms in the lipid head and the negatively charged DNA phosphates. D) The adsorbed DNA exhibits an ordered structure if it is complexed by barium, magnesium, calcium or manganese ions. The spacing between parallel DNA strands depends on the size of the DNA fragments as well as on the kind of cation. The largest DNA-spacings are observed with barium ions, followed by magnesium and calcium ions. DNA-complexation with manganese ions causes the smallest spacings. This order of ions is observed for both genomic and plasmid DNA. E) Compression of the monolayer does not influence the DNA spacings. Thus the interaction between the lipid monolayer and adsorbed DNA is only weak. The DNA must exist as a more or less separate layer under the lipid film. 2. Model system: Lipid bilayer at the solid/fluid-interface Methods: Neutron reflectometry (NR), and Quartz crystal microbalance (QCM-D) Results: A) The zwitterionic phospholipid DMPC (1,2-dimyristoyl phosphatidylcholine) does not form lipid bilayers on top of planar polyelectrolyte multilayers covered with the positively charged PAH (polyallylamine). B) In contrast, DMPC forms a lipid bilayer with defects on top of the negatively charged PSS (polystyrolsulfonate) terminated polyelectrolyte cushion. C) Genomic calf thymus DNA adsorbs only to the DMPC layer in presence of calcium ions. Different ions were not examined. D) The negatively charged phospholipid DLPA (1,2-dilauryl-phosphatidic acid) also forms a lipid bilayer with defects on top of the PAH-terminated cushion. E) The DNA adsorbs also to the DLPA layer only in the presence of calcium ions in the solution. F) By addition of EDTA (ethylenediaminetretraacetic acid) the calcium cations are removed from the DLPA/DNA-complex and the complex dissociates. Thus the calcium induced formation of that complex is reversible. KW - Lipide / Doppelschicht KW - DNA KW - Monoschicht KW - Gentransfer KW - Phospholipide KW - DNA-Lipid-Wechselwirkung KW - künstlicher Virus KW - zwitterionische Phospholipide KW - zweiwertige Kationen KW - zwitterionic phospholipids KW - DNA-lipid-interaction KW - divalent cations KW - artificial virus KW - lipid monolayer Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7629 ER - TY - THES A1 - Vogel, Stefanie T1 - Sequence dependency of photon and electron induced DNA strand breaks T1 - Sequenzabhängigkeit von photonen-und elektroneninduzierten DNA Strangbrüchen N2 - Deoxyribonucleic acid (DNA) is the carrier of human genetic information and is exposed to environmental influences such as the ultraviolet (UV) fraction of sunlight every day. The photostability of the DNA against UV light is astonishing. Even if the DNA bases have a strong absorption maximum at around 260 nm/4.77 eV, their quantum yield of photoproducts remains very low 1. If the photon energies exceed the ionization energy (IE) of the nucleobases ( ̴ 8-9 eV) 2, the DNA can be severely damaged. Photoexcitation and -ionization reactions occur, which can induce strand breaks in the DNA. The efficiency of the excitation and ionization induced strand breaks in the target DNA sequences are represented by cross sections. If Si as a substrate material is used in the VUV irradiation experiments, secondary electrons with an energy below 3.6 eV are generated from the substrate. This low energy electrons (LEE) are known to induce dissociative electron attachment (DEA) in DNA and with it DNA strand breakage very efficiently. LEEs play an important role in cancer radiation therapy, since they are generated secondarily along the radiation track of ionizing radiation. In the framework of this thesis, different single stranded DNA sequences were irradiated with 8.44 eV vacuum UV (VUV) light and cross sections for single strand breaks (SSB) were determined. Several sequences were also exposed to secondary LEEs, which additionally contributed to the SSBs. First, the cross sections for SSBs depending on the type of nucleobases were determined. Both types of DNA sequences, mono-nucleobase and mixed sequences showed very similar results upon VUV radiation. The additional influence of secondarily generated LEEs resulted in contrast in a clear trend for the SSB cross sections. In this, the polythymine sequence had the highest cross section for SSBs, which can be explained by strong anionic resonances in this energy range. Furthermore, SSB cross sections were determined as a function of sequence length. This resulted in an increase in the strand breaks to the same extent as the increase in the geometrical cross section. The longest DNA sequence (20 nucleotides) investigated in this series, however, showed smaller cross section values for SSBs, which can be explained by conformational changes in the DNA. Moreover, several DNA sequences that included the radiosensitizers 5-Bromouracil (5BrU) and 8-Bromoadenine (8BrA) were investigated and the corresponding SSB cross sections were determined. It was shown that 5BrU reacts very strongly to VUV radiation leading to high strand break yields, which showed in turn a strong sequence-dependency. 8BrA, on the other hand, showed no sensitization to the applied VUV radiation, since almost no increase in strand breakage yield was observed in comparison to non-modified DNA sequences. In order to be able to identify the mechanisms of radiation damage by photons, the IEs of certain DNA sequences were further explored using photoionization tandem mass spectrometry. By varying the DNA sequence, both the IEs depending on the type of nucleobase as well as on the DNA strand length could be identified and correlated to the SSB cross sections. The influence of the IE on the photoinduced reaction in the brominated DNA sequences could be excluded. N2 - Desoxyribonukleinsäure (DNA) ist als Träger der menschlichen Erbinformation täglich vielen Einflüssen ausgesetzt. Diese Einflüsse können Teil unserer Umwelt sein, wie der ultraviolette (UV) Anteil des Sonnenlichts. Die Photostabilität der DNA gegen UV-Licht ist erstaunlich, denn trotz eines starkes Absorptionsmaximum der DNA-Basen bei etwa 260 nm/4,77 eV, bleibt ihre Quantenausbeute an Photoprodukten sehr gering 1. Überschreiten die Photonenenergien die Ionisationsenergie (IE) der Nukleinbasen ( ̴ 8-9 eV) 2, kann die DNA schwer geschädigt werden. Es treten Anregungs- und Ionisierungsreaktionen auf, die zu Strangbrüchen in der DNA führen. Die Effizienz der induzierten Strangbrüche in den untersuchten DNA-Sequenzen wird durch Wirkungsquerschnitte dargestellt. Wird in den Bestrahlungsexperimenten Silizium als Substratmaterial verwendet, werden aus dem Substrat zusätzliche Sekundärelektronen mit einer Energie unter 3,6 eV erzeugt, die weiteren Schaden an der DNA verursachen. Diese niederenergetischen Elektronen (LEE) sind dafür bekannt, dissoziative Elektronenanlagerung (DEA) und damit Strangbrüche in der DNA zu erzeugen. LEEs entstehen sekundär entlang des Strahlungsweges von ionisierender Strahlung im biologischen Gewebe, wenn in der Behandlung der Krankheit Krebs Strahlentherapie eingesetzt wird. Im Rahmen dieser Arbeit wurden verschiedene Einzelstrang-DNA-Sequenzen mit 8.44 eV Vakuum-UV (VUV) Licht bestrahlt und Wirkungsquerschnitte für Einzel-strangbrüche (SSB) bestimmt. Ein Teil der Sequenzen wurde außerdem sekundär erzeugten LEEs ausgesetzt, die einen zusätzlichen Beitrag zu den SSBs liefern. Als erstes wurde der Wirkungsquerschnitt für SSBs in Abhängigkeit der Nukleinbasen bestimmt. Hierbei weisen sowohl die DNA Sequenzen, die nur ein Sorte an Nukleinbasen besitzen als auch die gemischte Sequenzen sehr ähnliche Werte auf. Durch den zusätzlichen Einfluss der LEEs hat sich wiederum für die DNA Sequenzen mit nur einer Sorte an Nukleinbasen ein stark ausgeprägter Trend gezeigt. Die Polythymin-Sequenz weist den höchsten Wirkungsquerschnitt für SSBs auf, was durch ausgeprägte anionische Resonanzen in diesem Energiebereich begründet werden kann. Des Weiteren wurden Wirkungsquerschnitte für SSBs in Abhängigkeit Sequenzlänge ermittelt. Dabei ergab sich eine Erhöhung der SSBs im gleichen Maße wie die Vergrößerung des geometrischen Wirkungsquerschnitts. Die längste DNA Sequenz (20 Nukleotide), die in dieser Reihe untersucht wurde, zeigte hingegen kleinere Werte für den SSB Wirkungsquerschnitt, was durch Konformationsänderungen in der DNA erklärt werden kann. Einige der untersuchten DNA Sequenzen wurden zusätzlich mit den Radiosensibilisatoren 5-Bromouracil (5BrU) und 8-Bromoadenine (8BrA) modifiziert und entsprechende SSB Wirkungsquerschnitte bestimmt. Hierbei hat sich gezeigt, dass 5BrU mittels einer hohen Strangbruchausbeute sehr stark auf VUV Strahlung reagiert, wobei das Ausmaß der Reaktion stark sequenzabhängig ist. 8BrA hingegen, weist keine Sensibilisierung gegenüber der verwendeten VUV Strahlung auf, da keine Erhöhung der Strangbruchausbeute gegenüber unmodifizierten DNA Sequenzen ersichtlich ist. Um die Mechanismen der Strahlenschädigung durch Photonen besser einschätzen zu können, wurden zusätzlich die IEs bestimmter DNA Sequenzen mit Hilfe der Photoionisations-Tandem-Massenspektrometrie untersucht. Durch Variation der DNA-Sequenzen konnte sowohl ein Trend der IEs in Abhängigkeit der Nukleinbasen und der DNA-Stranglänge identifiziert und als auch eine Abhängigkeit der Reaktivität von 5BrU von seinem IE in der entsprechenden DNA Sequenz ausgeschlossen werden. Die IE Trends und die Wirkungsquerschnitte für SSBs wurden abschließend in Korrelation gebracht. KW - DNA KW - photo ionization KW - dissociative electron attachment KW - DNA origami KW - radiosensitizer KW - ionization energy KW - tandem mass spectrometry KW - DNS KW - Photoionisation KW - Dissoziative Elektronenanlagerung KW - DNA Origami KW - Radiosensibilisator KW - Ionisierungsenergie KW - Tandemmassenspektrometrie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419669 ER - TY - GEN A1 - Meyer, Matthias A1 - Palkopoulou, Eleftheria A1 - Baleka, Sina Isabelle A1 - Stiller, Mathias A1 - Penkman, Kirsty E. H. A1 - Alt, Kurt W. A1 - Ishida, Yasuko A1 - Mania, Dietrich A1 - Mallick, Swapan A1 - Meijer, Tom A1 - Meller, Harald A1 - Nagel, Sarah A1 - Nickel, Birgit A1 - Ostritz, Sven A1 - Rohland, Nadin A1 - Schauer, Karol A1 - Schüler, Tim A1 - Roca, Alfred L. A1 - Reich, David A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods similar to 120 and similar to 244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 790 KW - genome sequence KW - woolly mammoth KW - Palaeoloxodon-antiquus KW - phylogenetic analysis KW - African elephants KW - DNA KW - Pleistocene KW - alignment KW - ancient KW - reveal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440139 SN - 1866-8372 IS - 790 ER - TY - THES A1 - Breitenstein, Michael T1 - Ortsaufgelöster Aufbau von DNA-Nanostrukturen auf Glasoberflächen T1 - Assembly of DNA nanostructures on glass surfaces N2 - Im Fokus dieser Arbeit stand der Aufbau einer auf DNA basierenden Nanostruktur. Der universelle Vier-Buchstaben-Code der DNA ermöglicht es, Bindungen auf molekularer Ebene zu adressieren. Die chemischen und physikalischen Eigenschaften der DNA prädestinieren dieses Makromolekül für den Einsatz und die Verwendung als Konstruktionselement zum Aufbau von Nanostrukturen. Das Ziel dieser Arbeit war das Aufspannen eines DNA-Stranges zwischen zwei Fixpunkten. Hierfür war es notwendig, eine Methode zu entwickeln, welche es ermöglicht, Funktionsmoleküle als Ankerelemente ortsaufgelöst auf eine Oberfläche zu deponieren. Das Deponieren dieser Moleküle sollte dabei im unteren Mikrometermaßstab erfolgen, um den Abmaßen der DNA und der angestrebten Nanostruktur gerecht zu werden. Das eigens für diese Aufgabe entwickelte Verfahren zum ortsaufgelösten Deponieren von Funktionsmolekülen nutzt das Bindungspaar Biotin-Neutravidin. Mit Hilfe eines Rasterkraftmikroskops (AFM) wurde eine zu einem „Stift“ umfunktionierte Rasterkraftmikroskopspitze so mit der zu deponierenden „Tinte“ beladen, dass das Absetzen von Neutravidin im unteren Mikrometermaßstab möglich war. Dieses Neutravidinmolekül übernahm die Funktion als Bindeglied zwischen der biotinylierten Glasoberfläche und dem eigentlichen Adressmolekül. Das somit generierte Neutravidin-Feld konnte dann mit einem biotinylierten Adressmolekül durch Inkubation funktionalisiert werden. Namensgebend für dieses Verfahren war die Möglichkeit, Neutravidin mehrmals zu deponieren und zu adressieren. Somit ließ sich sequenziell ein Mehrkomponenten-Feld aufbauen. Die Einschränkung, mit einem AFM nur eine Substanz deponieren zu können, wurde so umgangen. Ferner mußten Ankerelemente geschaffen werden, um die DNA an definierten Punkten immobilisieren zu können. Die Bearbeitung der DNA erfolgte mit molekularbiologischen Methoden und zielte darauf ab, einen DNA-Strang zu generieren, welcher an seinen beiden Enden komplementäre Adressequenzen enthält, um gezielt mit den oberflächenständigen Ankerelementen binden zu können. Entsprechend der Geometrie der mit dem AFM erzeugten Fixpunkte und den oligonukleotidvermittelten Adressen kommt es zur Ausbildung einer definierten DNA-Struktur. Mit Hilfe von fluoreszenzmikroskopischen Methoden wurde die aufgebaute DNA-Nanostruktur nachgewiesen. Der Nachweis der nanoskaligen Interaktion von DNA-bindenden Molekülen mit der generierten DNA-Struktur wurde durch die Bindung von PNA (peptide nucleic acid) an den DNA-Doppelstrang erbracht. Diese PNA-Bindung stellt ihrerseits ein funktionales Strukturelement im Nanometermaßstab dar und wird als Nanostrukturbaustein verstanden. N2 - The main aim of this work was the development of a DNA-based nanostructure. The universal four-letter code of DNA allows addressing bonds at the molecular level. The chemical and physical property of DNA makes this macromolecule an ideal candidate as a construction element for nanostructures. The aim of this work was to span a DNA strand between two fixed points. For this purpose it was necessary to develop a method which makes it possible to deposit functional molecules as anchoring elements with highly spatial resolution on a surface. These molecules should be immobilized on the lower micrometer scale to meet the requirements of the desired nanostructure. The method that has been developed for this task, which enables to deposit functional molecules, uses the binding pair biotin-neutravidin. Using the tip of an atomic force microscope (AFM), which can be uses like a pen, it was possible to deposit neutravidin on the lower micrometer scale. This neutravidin molecule is the linking element between the biotinylated glass surface and the actual address molecule. The thus generated neutravidin field could then be functionalized with a biotinylated molecule by incubation. The method has been published as sequential spotting method because it enables a sequential functionalization of neutravidin after it has been deposited. It was so possible to build up a multi-component array. The limitation of being able to deposit only one single substance with an AFM has been circumvented. It also was necessary to create anchor elements in order to immobilize the DNA at defined positions. The processing of the DNA was carried out using molecular biological methods and aimed at generating a DNA strand, which at both ends has a complementary sequence for binding to the surface bound anchor elements. The defined structure is a result of the geometry of the fixed points, generated by the AFM. Using fluorescence microscopy, the constructed DNA nanostructure was detected. The proof of the interaction of DNA-binding molecules with the DNA structure was carried out by the binding of PNA (peptide nucleic acid), which is capable of binding to double stranded DNA. The PNA and its DNA-interaction is a functional building block in the nanometer scale and can be regarded as a promising nanostructure. KW - Nanostruktur KW - DNA KW - Rasterkraftmikroskop KW - Fluoreszenzmikroskopie KW - Oberflächenfunktionalisierung KW - nanostructure KW - DNA KW - atomic force microscope KW - fluorescence microscopy KW - surface chemistry Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-61857 ER - TY - THES A1 - Möser, Christin T1 - Modular DNA constructs for oligovalent bio-enhancement and functional screening T1 - Modulare DNA-Konstrukte für oligovalente Bio-Verstärkung und funktionelles Screening N2 - Deoxyribonucleic acid (DNA) nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. This dissertation covers three main projects. All of them use variations of functionalized DNA nanostructures that act as platform for oligovalent presentation of ligands. The purpose of this work was to evaluate the ability of DNA nanostructures to precisely display different types of functional molecules and to consequently enhance their efficacy according to the concept of multivalency. Moreover, functionalized DNA structures were examined for their suitability in functional screening assays. The developed DNA-based compound ligands were used to target structures in different biological systems. One part of this dissertation attempted to bind pathogens with small modified DNA nanostructures. Pathogens like viruses and bacteria are known for their multivalent attachment to host cells membranes. By blocking their receptors for recognition and/or fusion with their targeted host in an oligovalent manner, the objective was to impede their ability to adhere to and invade cells. For influenza A, only enhanced binding of oligovalent peptide-DNA constructs compared to the monovalent peptide could be observed, whereas in the case of respiratory syncytial virus (RSV), binding as well as blocking of the target receptors led to an increased inhibition of infection in vitro. In the final part, the ability of chimeric DNA-peptide constructs to bind to and activate signaling receptors on the surface of cells was investigated. Specific binding of DNA trimers, conjugated with up to three peptides, to EphA2 receptor expressing cells was evaluated in flow cytometry experiments. Subsequently, their ability to activate these receptors via phosphorylation was assessed. EphA2 phosphorylation was significantly increased by DNA trimers carrying three peptides compared to monovalent peptide. As a result of activation, cells underwent characteristic morphological changes, where they "round up" and retract their periphery. The results obtained in this work comprehensively prove the capability of DNA nanostructures to serve as stable, biocompatible, controllable platforms for the oligovalent presentation of functional ligands. Functionalized DNA nanostructures were used to enhance biological effects and as tool for functional screening of bio-activity. This work demonstrates that modified DNA structures have the potential to improve drug development and to unravel the activation of signaling pathways. N2 - Desoxyribonukleinsäure (DNS, engl. DNA) - Nanostrukturen ermöglichen die Anbringung funktioneller Moleküle an nahezu jede einzigartige Stelle der zugrunde liegenden Struktur. Aufgrund der Basenpaar-Strukturauflösung von DNA können mehrere Moleküle (z.B. Liganden) entsprechend der Geometrie ihres gewünschten Ziels räumlich angeordnet und genau kontrolliert werden, was zu optimierten Bindungs- und/oder Signalwechselwirkungen führt. Diese Dissertation umfasst drei Hauptprojekte. Alle Projekte verwenden Varianten von funktionalisierten DNA-Nanostrukturen, die als Plattform für die oligovalente Präsentation von Liganden dienen. Ziel der vorliegenden Arbeit war es, die Fähigkeit von DNA-Nanostrukturen zur präzisen Positionierung verschiedener Arten von funktionellen Molekülen zu evaluieren und folglich die Wirksamkeit der Moleküle gemäß dem Konzept der Multivalenz zu erhöhen. Außerdem wurde untersucht, wie funktionalisierte DNA-Strukturen in verschiedenen Verfahren zur Erforschung von biologischen Interaktionen eingesetzt werden können. Die entwickelten DNA-basierten Liganden wurden verwendet, um Strukturen auf verschiedenen biologischen Systemen gezielt zu binden. In einem Teil dieser Dissertation wurde versucht, Krankheitserreger mit kleinen modifizierten DNA-Nanostrukturen zu binden. Pathogene, wie Viren und Bakterien, sind für ihre multivalente Anheftung an Wirtszellmembranen bekannt. Durch die oligovalente Blockierung ihrer Rezeptoren für die Erkennung und/oder Fusion mit ihrem Wirt sollte ihre Fähigkeit, sich an Zielzellen anzuheften und in diese einzudringen, beeinträchtigt werden. Bei Influenza A Viren konnte nur eine verstärkte Bindung von oligovalenten Peptid-DNA-Konstrukten im Vergleich zu monovalenten Peptiden beobachtet werden, wohingegen bei Respiratorischen Synzytial-Viren (RSV) sowohl die Bindung als auch die Blockierung der Zielrezeptoren zu einer verstärkten Hemmung der Infektion in vitro führte. Im letzten Teil wurden chimäre DNA-Peptidkonstrukte auf ihre Fähigkeit, an Signalrezeptoren auf der Oberfläche von Zellen zu binden und diese zu aktivieren, getestet. Die spezifische Bindung von mit bis zu drei Peptiden konjugierten DNA-Trimeren an EphA2-Rezeptor-exprimierende Zellen wurde in Durchflusszytometrie-Experimenten untersucht. Anschließend wurde ihre Fähigkeit, diese Rezeptoren durch Phosphorylierung zu aktivieren, beurteilt. Die Phosphorylierung von EphA2 war durch DNA-Trimere, die drei Peptide trugen, im Vergleich zu monovalenten Peptiden signifikant erhöht. Infolge der Aktivierung kommt es zu charakteristischen morphologischen Veränderungen der Zellen, bei denen diese ihre Peripherie "abrunden" und zurückziehen. Die in dieser Arbeit erzielten Ergebnisse beweisen umfassend die Fähigkeit von DNA-Nanostrukturen, als stabile, biokompatible, kontrollierbare Plattformen für die oligovalente Präsentation funktioneller Liganden zu fungieren. Funktionalisierte DNA-Nanostrukturen wurden zur Verstärkung biologischer Effekte und als Werkzeug für das funktionelle Screening von biologischen Interaktionen verwendet. Diese Arbeit zeigt, dass modifizierte DNA-Strukturen das Potenzial haben, die Medikamentenentwicklung zu verbessern und die Aktivierung von Signalwegen zu entschlüsseln. KW - DNA KW - multivalency KW - influenza KW - respiratory syncytial virus KW - nanostructure KW - ephrin KW - DNA KW - Ephrin KW - Influenza KW - Multivalenz KW - Nanostruktur KW - Respiratorisches Synzytial-Virus KW - DNS Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-507289 ER - TY - THES A1 - Schüler, Corinna T1 - Mikro- und Nanokapseln aus Funktionspolymeren, Biopolymeren und Proteinen N2 - In dieser Arbeit wird die Beschichtung von kolloidalen Templaten mit Hilfe der Layer-by-layer Technik beschrieben. Mit ihr ist es möglich, die Oberfläche der Template mit sehr dünnen und gut definierten Filmen zu versehen. Durch Auflösung der Template werden Kapseln hergestellt, die je nach Zusammensetzung der Beschichtung unterschiedliche Eigenschaften aufweisen. N2 - In this thesis the coating of colloid templates using the layer-by-layer technique is described. The surface of the templates is modified with thin, well defined films. After dissolving the templates, hollow capsules with different properties are obtained. KW - Layer-by-Layer KW - Polyelektrolyte KW - Kolloide KW - Koordinationspolymere KW - enzymatische Katalyse KW - GOD KW - POD KW - Kapseln KW - DNA KW - Biopolymere Y1 - 2000 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000102 ER - TY - THES A1 - Fischbach, Jens T1 - Isothermale Amplifikationsmethoden für den DNA- und Pyrophosphat-abhängigen Pathogennachweis T1 - Isothermal amplification methods for DNA- and pyrophophate based pathogen detection N2 - Hintergrund: Etablierte Protein- und Nukleinsäure-basierte Methoden für den spezifischen Pathogennachweis sind nur unter standardisierten Laborbedingungen von geschultem Personal durchführbar und daher mit einem hohen Zeit- und Kostenaufwand verbunden. In der Nukleinsäure-basierten Diagnostik kann durch die Einführung der isothermalen Amplifikation eine schnelle und kostengünstige Alternative zur Polymerase-Kettenreaktion (PCR) verwendet werden. Die Loop-mediated isothermal amplification (LAMP) bietet aufgrund der hohen Amplifikationseffizienz vielfältige Detektionsmöglichkeiten, die sowohl für Schnelltest- als auch für Monitoring-Anwendungen geeignet sind. Ein wesentliches Ziel dieser Arbeit war die Verbesserung der Anwendbarkeit der LAMP und die Entwicklung einer neuen Methode für den einfachen, schnellen und günstigen Nachweis von Pathogenen mittels alternativer DNA- oder Pyrophosphat-abhängiger Detektionsverfahren. Hier wurden zunächst direkte und indirekte Detektionsmethoden untersucht und darauf aufbauend ein Verfahren entwickelt, mit dem neue Metallionen-abhängige Fluoreszenzfarbstoffe für die selektive Detektion von Pyrophosphat in der LAMP und anderen enzymatischen Reaktionen identifiziert werden können. Als Alternative für die DNA-basierte Detektion in der digitalen LAMP sollten die zuvor etablierten Farbstoffe für den Pyrophosphatnachweis in einer Emulsion getestet werden. Abschließend wurde ein neuer Reaktionsmechanismus für die effiziente Generierung hochmolekularer DNA unter isothermalen Bedingungen als Alternative zur LAMP entwickelt. Ergebnisse: Für den Nachweis RNA- und DNA-basierter Phythopathogene konnte die Echtzeit- und Endpunktdetektion mit verschiedenen Farbstoffen in einem geschlossenen System etabliert werden. Hier wurde Berberin als DNA-interkalierender Fluoreszenzfarbstoff mit vergleichbarer Sensitivität zu SYBR Green und EvaGreen erfolgreich in der LAMP mit Echtzeitdetektion eingesetzt. Ein Vorteil von Berberin gegenüber den anderen Farbstoffen ist die Toleranz der DNA-Polymerase auch bei hohen Farbstoffkonzentrationen. Berberin kann daher auch in der geschlossenen LAMP-Reaktion ohne zusätzliche Anpassung der Reaktionsbedingungen für die Endpunktdetektion verwendet werden. Darüber hinaus konnte Hydroxynaphtholblau (HNB), das für den kolorimetrischen Endpunktnachweis bekannt ist, erstmals auch für die fluorimetrische Detektion der LAMP in Echtzeit eingesetzt werden. Zusätzlich konnten in der Arbeit weitere Metallionen-abhängige Farbstoffe zur indirekten Detektion der LAMP über das Pyrophosphat identifiziert werden. Dafür wurde eine iterative Methode entwickelt, mit der potenzielle Farbstoffe hinsichtlich ihrer Enzymkompatibilität und ihrer spektralen Eigenschaften bei An- oder Abwesenheit von Manganionen selektiert werden können. Mithilfe eines kombinatorischen Screenings im Mikrotiterplattenformat konnte die komplexe Konzentrationsabhängigkeit zwischen den einzelnen Komponenten für einen fluorimetrischen Verdrängungsnachweis untersucht werden. Durch die Visualisierung des Signal-Rausch-Verhältnis’ als Intensitätsmatrix (heatmap) konnten zunächst Alizarinrot S und Tetrazyklin unter simulierten Reaktionsbedingungen selektiert werden. In der anschließenden enzymatischen LAMP-Reaktion konnte insbesondere Alizarinrot S als günstiger, nicht-toxischer und robuster Fluoreszenzfarbstoff identifiziert werden und zeigte eine Pyrophosphat-abhängige Zunahme der Fluoreszenzintensität. Die zuvor etablierten Farbstoffe (HNB, Calcein und Alizarinrot S) konnten anschließend erfolgreich für die indirekte, fluorimetrische Detektion von Pyrophosphat in einer LAMP-optimierten Emulsion eingesetzt werden. Die Stabilität und Homogenität der generierten Emulsion wurde durch den Zusatz des Emulgators Poloxamer 188 verbessert. Durch die fluoreszenzmikroskopische Analyse der Emulsion war eine eindeutige Diskriminierung der positiven und negativen Tröpfchen vor allem bei Einsatz von Calcein und Alizarinrot S möglich. Aufgrund des komplexen Primer-Designs und der hohen Wahrscheinlichkeit unspezifischer Amplifikation in der LAMP wurde eine neue Bst DNA-Polymerase-abhängige isothermale Amplifikationsreaktion entwickelt. Durch die Integration einer spezifischen Linkerstruktur (abasische Stelle oder Hexaethylenglykol) zwischen zwei Primersequenzen konnte ein bifunktioneller Primer die effiziente Regenerierung der Primerbindungsstellen gewährleisten. Der neue Primer induziert nach der spezifischen Hybridisierung auf dem Templat die Rückfaltung zu einer Haarnadelstruktur und blockiert gleichzeitig die Polymeraseaktivität am Gegenstrang, wodurch eine autozyklische Amplifikation trotz konstanter Reaktionstemperatur möglich ist. Die Effizienz der „Hinge-initiated Primer dependent Amplification“ (HIP) konnte abschließend durch die Verkürzung der Distanz zwischen einem modifizierten Hinge-Primer und einem PCR-ähnlichen Primer verbessert werden. Schlussfolgerung: Die LAMP hat sich aufgrund der hohen Robustheit und Effizienz zu einer leistungsfähigen Alternative für die klassische PCR in der molekularbiologischen Diagnostik entwickelt. Unterschiedliche Detektionsverfahren verbessern die Leistungsfähigkeit der qualitativen und quantitativen LAMP für die Feldanwendungen und für die Diagnostik, da die neuen DNA- und Pyrophosphat-abhängigen Nachweismethoden in einer geschlossenen Reaktion eingesetzt werden können und so eine einfache Pathogendiagnostik ermöglichen. Die gezeigten Methoden können darüber hinaus zu einer Kostensenkung und Zeitersparnis gegenüber den herkömmlichen Methoden beitragen. Ein attraktives Ziel stellt die Weiterentwicklung der HIP für den Pathogennachweis als Alternative zur LAMP dar. Hierbei können die neuen LAMP-Detektionsverfahren ebenfalls Anwendung finden. Die Verwendung von Bst DNA-Polymerase-abhängigen Reaktionen ermöglicht darüber hinaus die Integration einer robusten isothermalen Amplifikation in mikrofluidische Systeme. Durch die Kombination der Probenvorbereitung, Amplifikation und Detektion sind zukünftige Anwendungen mit kurzer Analysezeit und geringem apparativen Aufwand insbesondere in der Pathogendiagnostik möglich. N2 - Background: Established protein- and nucleic acid-based methods for the specific pathogen detection are usually performed under standardized laboratory conditions by trained staff and are associated with long processing time and high costs. In nucleic acid-based pathogen diagnostics, the isothermal amplification can be used as a rapid and cost-effective alternative to the polymerase chain reaction (PCR). Among all isothermal techniques, the loop-mediated isothermal amplification (LAMP) offers a wide range of applications for the rapid endpoint and real-time detection. A major goal of this work, was to improve the applicability of LAMP and the development of a new method to get a simple, fast and cost-effective diagnostic tool that is based on the detection of DNA and pyrophosphate. For this purpose, direct and indirect detection methods were investigated as well as additional metal ion-dependent fluorescent dyes for the selective detection of pyrophosphate in LAMP or other enzymatic reactions identified. As an alternative to the DNA-based digital LAMP, the previously established dyes were tested for the detection of pyrophosphate in emulsion. Finally, a new reaction mechanism was developed that allows the efficient generation of high molecular weight DNA under isothermal reaction conditions. Results: The detection of RNA- and DNA-based phytopathogens in closed reactions was established successfully with different dyes for real-time and endpoint detection. Berberine as DNA-intercalating fluorescent dye was used in the real-time detection of LAMP with comparable sensitivity to SYBR Green and EvaGreen for the first time. Additionally, the results revealed adequate tolerance of the Bst DNA polymerase to higher concentrations of the dye. Thus, it could be used directly in a closed LAMP reaction without any optimization. Furthermore, the magnesium indicator hydroxynaphthol blue (HNB) was used for fluorometric real-time detection in LAMP for the first time. To extend the number of indirect detection methods for the accumulating pyrophosphate in LAMP and other enzymatic reactions, new metal-ion-dependent dyes were identified. The developed platform could support the iterative process of finding new fluorescent dyes with regard to enzyme compatibility and their spectral properties in the presence or absence of manganese ions. To obtain a selective fluorometric displacement assay, the complex concentration dependence between all components was investigated successfully by the establishment of a combinatorial screening in a microtiter plate. The visualization of the calculated signal-to-noise ratio was then used to identify alizarin red S and tetracycline as promising candidates under simulated reaction conditions. By testing both dyes in the enzymatic assay, alizarin red S was confirmed as low-cost, non-toxic and robust dye for the pyrophosphate dependent increase of the fluorescence intensity. The previously established dyes (HNB, calcein and alizarin red S) were applied successfully for the indirect and fluorometric detection of pyrophosphate in a LAMP-optimized emulsion. The stability and homogeneity of the generated emulsion was increased by adding the surfactant poloxamer 188. The fluorescence microscopic analysis showed a distinct discrimination between positive and negative droplets, in particular by using calcein, HNB and alizarin red S. Additionally, a new amplification reaction that is also based on the Bst DNA polymerase was developed to prevent the complicated primer design and likelihood of unspecific amplification in LAMP. The efficient regeneration of the single stranded priming site was achieved by the integration of a specific linker (abasic site or hexaethylenglycol) between two priming sites to create a bifunctional hinge-primer. After the hybridization on the template sequence, the hinge-primer was used to induce the refolding to a hairpin structure and for blocking the polymerase activity on the reverse strand. Thus, an autocyclic amplification can be achieved at isothermal reaction conditions. Finally, the efficiency of the hinge-initiated primer dependent amplification (HIP) was improved by decreasing the distance between the modified hinge-primer and the corresponding PCR-like primer. Conclusion: Due to its robustness and efficiency, LAMP has been developed to a powerful alternative for the standardized PCR-based diagnostics in molecular biology in the past years. Different detection methods improve the performance of the qualitative and quantitative LAMP in field applications as well as in diagnostics. The new DNA and pyrophosphate based assays can be used in closed reactions and contribute to a simple pathogen detection. Furthermore, the advancements can lead to a considerable reduction of costs and time compared to conventional methods. An attractive achievement is the further optimization of the HIP as sensitive pathogen assay by using LAMP-based detection methods. The use of Bst DNA polymerasedependent reactions will allow a robust integration of the isothermal amplification in microfluidic systems. By combining sample preparation, amplification and detection in one device, powerful applications with short analysis time and low instrumental requirements are a future perspective in pathogen diagnostics. KW - isothermale Amplifikation KW - isothermal amplification KW - Pyrophosphat KW - pyrophosphate KW - DNA KW - DNA KW - Pathogen KW - pathogen KW - LAMP KW - LAMP Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-406072 ER - TY - GEN A1 - Kasyanenko, Nina A1 - Unksov, Ivan A1 - Bakulev, Vladimir A1 - Santer, Svetlana T1 - DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 940 KW - azobenzene trimethylammonium bromide KW - head-to-tail surfactant associates KW - DNA KW - ionic strength KW - multivalent ions Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459806 SN - 1866-8372 IS - 940 ER - TY - THES A1 - Wettstein, Christoph T1 - Cytochrome c-DNA and cytochrome c-enzyme interactions for the construction of analytical signal chains N2 - Electron transfer (ET) reactions play a crucial role in the metabolic pathways of all organisms. In biotechnological approaches, the redox properties of the protein cytochrome c (cyt c), which acts as an electron shuttle in the respiratory chain, was utilized to engineer ET chains on electrode surfaces. With the help of the biopolymer DNA, the redox protein assembles into electro active multilayer (ML) systems, providing a biocompatible matrix for the entrapment of proteins. In this study the characteristics of the cyt c and DNA interaction were defined on the molecular level for the first time and the binding sites of DNA on cyt c were identified. Persistent cyt c/DNA complexes were formed in solution under the assembly conditions of ML architectures, i.e. pH 5.0 and low ionic strength. At pH 7.0, no agglomerates were formed, permitting the characterization of the NMR spectroscopy. Using transverse relaxation-optimized spectroscopy (TROSY)-heteronuclear single quantum coherence (HSQC) experiments, DNAs’ binding sites on the protein were identified. In particular, negatively charged AA residues, which are known interaction sites in cyt c/protein binding were identified as the main contact points of cyt c and DNA. Moreover, the sophisticated task of arranging proteins on electrode surfaces to create functional ET chains was addressed. Therefore, two different enzyme types, the flavin dependent fructose dehydrogenase (FDH) and the pyrroloquinoline quinone dependent glucose dehydrogenase (PQQ-GDH), were tested as reaction partners of freely diffusing cyt c and cyt c immobilized on electrodes in mono- and MLs. The characterisation of the ET processes was performed by means of electrochemistry and the protein deposition was monitored by microgravimetric measurements. FDH and PQQ-GDH were found to be generally suitable for combination with the cyt c/DNA ML system, since both enzymes interact with cyt c in solution and in the immobilized state. The immobilization of FDH and cyt c was achieved with the enzyme on top of a cyt c monolayer electrode without the help of a polyelectrolyte. Combining FDH with the cyt c/DNA ML system did not succeed, yet. However, the basic conditions for this protein-protein interaction were defined. PQQ-GDH was successfully coupled with the ML system, demonstrating that that the cyt c/DNA ML system provides a suitable interface for enzymes and that the creation of signal chains, based on the idea of co-immobilized proteins is feasible. Future work may be directed to the investigation of cyt c/DNA interaction under the precise conditions of ML assembly. Therefore, solid state NMR or X-ray crystallography may be required. Based on the results of this study, the combination of FDH with the ML system should be addressed. Moreover, alternative types of enzymes may be tested as catalytic component of the ML assembly, aiming on the development of innovative biosensor applications. N2 - In den Energiegewinnungsprozessen der Zellen spielen biochemische Reaktion, die auf Elektronentransfer (ET) basieren, eine wichtige Rolle. So sind die Proteinkomplexe der Atmungskette, welche an der inneren Membran der Mitochondrien abläuft, über eine ET-Kette miteinander verbunden. In biotechnologischen Anwendungen wird dieses Phänomen genutzt um Proteine auf der Oberfläche von Elektroden als funktionierende ET-Ketten zu arrangieren. Dabei kann der ET innerhalb dieser Kaskaden als elektrischer Strom gemessen und als Signal betrachtet werden. Dies ermöglicht die Anwendung von proteinmodifizierten Elektroden als Biosensoren und Biobrennstoffzellen. Ein geeigneter Baustein für den Aufbau vielschichtiger ET-Systeme ist das kleine, eisenhaltige Protein Cytochrom c (Cyt c), welches in der Lage ist Elektronen aufzunehmen, zu transportieren und wieder abzugeben. Als zweiter Baustein dient das lange, fadenartige Biomolekül DNA. DNA und Cyt c interagieren unter bestimmten Bedingungen aufgrund ihrer entgegengesetzten Oberflächenladungen. Dies ermöglicht den schichtweisen Aufbau stabiler Cyt c/DNA-Multischichten (MS) auf Elektrodenoberflächen, welche durch die sogenannte Layer-by-Layer (LbL) Technik aufgebaut werden. In diesen MS Systemen behält Cyt c trotz der Immobilisierung seine Beweglichkeit um die eigene Achse, wodurch der Selbstaustausch von Elektronen zwischen den Cyt c Molekülen sowie der ET zur Elektrode gewährleistet wird. Der molekulare Aufbau der Cyt c/DNA MS sowie die Interaktion zwischen den zwei biologischen Bausteine ist weitgehend unerforscht, daher wurden in der vorliegenden Studie die genauen Bedingungen der Cyt c/DNA Interaktion in Lösung untersucht. Außerdem wird die Eignung des MS Systems zur Einbettung von Enzymen getestet. Die Bausteine des MS-Systems, Cyt c und DNA bilden in Lösung stabile Komplexe unter den Assemblierungsbedingungen der MS (d.h. pH 5.0 und geringe Salzkonzentration). Im Vergleich dazu tritt bei pH 7.0 eine schwächere Interaktion auf, die für eine Komplexbildung nicht ausreicht. Dies ermöglicht die Untersuchung der Interaktion mittels Kernspinresonanzspektroskopie (NMR, engl. nuclear magnetic resonance spectroscopy), wobei die Interaktionsstellen des DNA-Moleküls auf Cyt c bestimmt werden. Im Vergleich zu pH 7.0 wird im leicht sauren pH-Bereich (6.0) eine erhöhte Anzahl an Interaktionspunkten gefunden, was Rückschlüsse auf eine erhöhte Interaktion zulässt. Dies resultiert schließlich in der starken Bindung bei pH 5.0, die den Aufbau stabiler Cyt c/DNA-MS auf Elektrodenoberflächen ermöglicht. Darüber hinaus spielen der Salzgehalt der Lösung sowie das Konzentrationsverhältnis von Cyt c und DNA eine wichtige Rolle. Auf der Grundlage des Cyt c/DNA-MS Aufbaus sollte durch die Kopplung eines Enzymes eine Signalkette mit sensorischen Eigenschaften geschaffen werden. Das Enzym dient dabei als Erkennungselement für bestimmte Moleküle in Lösung. Durch die Reaktion des Enzyms mit dem Molekül wird ein bioelektrisches Signal generiert, das durch elektrochemische Methoden gemessen wird. Dies wurde mit zwei verschiedenen Enzymen, der Glukose Dehydrogenase (GDH) und der Fruktose Dehydrogenase (FDH), untersucht. Beide Enzyme waren in der Lage mit einer Cyt c Monoschicht zu kommunizieren und konnten mit dem redox Protein auf der Elektrodenoberfläche immobilisiert werden. GDH konnte erfolgreich mit dem Cyt c/DNA-MS System gekoppelt und die Sensoreigenschaften der so aufgebauten Elektronentransferkette charakterisiert werden. Zusammenfassend charakterisiert diese Arbeit die Bedingungen der Cyt c/DNA-Komplexbildung und gibt einen Einblick in die bisher unbekannte Interaktion zwischen Cyt c und DNA auf der molekularen Ebene. Darüber hinaus wird die Nutzbarkeit des Cyt c/DNA MS Systems zur Einbettung von Enzymen am Beispiel der GDH gezeigt und schafft somit die Grundlage für das bessere Verständnis von ET Reaktionen zwischen Proteinen auf Elektrodenoberflächen. T2 - Cytochrom c-DNA und Cytochrom c-Enzym Interaktion für den Aufbau analytischer Signalketten KW - biosensor KW - protein KW - DNA KW - enzyme KW - interaction KW - DNA KW - Biosensor KW - Enzym KW - Interaktion KW - Protein Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78367 ER - TY - GEN A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1059 KW - multiple sequence alignment KW - Oxidase Subunit-I KW - mitochondrial genome KW - control region KW - Ribosomal-RNA KW - asellota crustacea KW - gammarus crustacea KW - deep-sea KW - DNA KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460792 SN - 1866-8372 IS - 1059 ER -