TY - BOOK A1 - Zass, Alexander A1 - Zagrebnov, Valentin A1 - Sukiasyan, Hayk A1 - Melkonyan, Tatev A1 - Rafler, Mathias A1 - Poghosyan, Suren A1 - Zessin, Hans A1 - Piatnitski, Andrey A1 - Zhizhina, Elena A1 - Pechersky, Eugeny A1 - Pirogov, Sergei A1 - Yambartsev, Anatoly A1 - Mazzonetto, Sara A1 - Lykov, Alexander A1 - Malyshev, Vadim A1 - Khachatryan, Linda A1 - Nahapetian, Boris A1 - Jursenas, Rytis A1 - Jansen, Sabine A1 - Tsagkarogiannis, Dimitrios A1 - Kuna, Tobias A1 - Kolesnikov, Leonid A1 - Hryniv, Ostap A1 - Wallace, Clare A1 - Houdebert, Pierre A1 - Figari, Rodolfo A1 - Teta, Alessandro A1 - Boldrighini, Carlo A1 - Frigio, Sandro A1 - Maponi, Pierluigi A1 - Pellegrinotti, Alessandro A1 - Sinai, Yakov G. ED - Roelly, Sylvie ED - Rafler, Mathias ED - Poghosyan, Suren T1 - Proceedings of the XI international conference stochastic and analytic methods in mathematical physics N2 - The XI international conference Stochastic and Analytic Methods in Mathematical Physics was held in Yerevan 2 – 7 September 2019 and was dedicated to the memory of the great mathematician Robert Adol’fovich Minlos, who passed away in January 2018. The present volume collects a large majority of the contributions presented at the conference on the following domains of contemporary interest: classical and quantum statistical physics, mathematical methods in quantum mechanics, stochastic analysis, applications of point processes in statistical mechanics. The authors are specialists from Armenia, Czech Republic, Denmark, France, Germany, Italy, Japan, Lithuania, Russia, UK and Uzbekistan. A particular aim of this volume is to offer young scientists basic material in order to inspire their future research in the wide fields presented here. T3 - Lectures in pure and applied mathematics - 6 KW - statistical mechanics KW - random point processes KW - stochastic analysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459192 SN - 978-3-86956-485-2 SN - 2199-4951 SN - 2199-496X IS - 6 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Rafler, Mathias T1 - Pinned Gibbs processes JF - Lectures in pure and applied mathematics KW - random point processes KW - statistical mechanics KW - stochastic analysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472007 SN - 978-3-86956-485-2 SN - 2199-4951 SN - 2199-496X IS - 6 SP - 45 EP - 53 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - INPR A1 - Rafler, Mathias T1 - Martin-Dynkin Boundaries of the Bose Gas N2 - The Ginibre gas is a Poisson point process defined on a space of loops related to the Feynman-Kac representation of the ideal Bose gas. Here we study thermodynamic limits of different ensembles via Martin-Dynkin boundary technique and show, in which way infinitely long loops occur. This effect is the so-called Bose-Einstein condensation. T3 - Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint - 2008, 03 KW - Martin-Dynkin boundary KW - Bose-Einstein condensation KW - Point process KW - Loop space KW - Gibbs state Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51667 ER - TY - THES A1 - Rafler, Mathias T1 - Gaussian loop- and Pólya processes : a point process approach T1 - Gaußsche Loop- and Pólya-Prozesse : ein Zugang via Punktprozessen N2 - This thesis considers on the one hand the construction of point processes via conditional intensities, motivated by the partial Integration of the Campbell measure of a point process. Under certain assumptions on the intensity the existence of such a point process is shown. A fundamental example turns out to be the Pólya sum process, whose conditional intensity is a generalisation of the Pólya urn dynamics. A Cox process representation for that point process is shown. A further process considered is a Poisson process of Gaussian loops, which represents a noninteracting particle system derived from the discussion of indistinguishable particles. Both processes are used to define particle systems locally, for which thermodynamic limits are determined. N2 - Betrachtet wird zum einen die Konstruktion von Punktprozessen mittels bedingter Intensitäten, motivert durch die partielle Integration des Campbell-Maßes eines Punktprozesses, die gerade bedingte Intensitäten liefert. Unter bestimmten Annahmen an die Intensitäten wird gezeigt, dass ein solcher Punktprozess existiert. Als ein fundamentaler Vertreter stellt sich der Pólyasche Summenprozess heraus, aus einer Verallgemeinerung der Dynamik der Pólyaschen Urne hervorgeht. Fuer ihn werden u.a. eine Darstellung als Cox-Prozess gezeigt. Mit einem Poissonprozess von Gaußschen Loops wird ein nicht wechselwirkendes Teilchensystem betrachtet, das aus der Diskussion von Systemen ununterscheidbarer Teilchen abgeleitet ist. Mit beiden Prozessen werden jeweils lokal Teilchensysteme konstuiert, fuer die die thermodynamischen Limiten identifiziert werden. KW - Punktprozesse KW - partielle Integration KW - Gaußsche Loopprozess KW - Papangelou-Prozess KW - Polyascher Prozess KW - Point Processes KW - Partial Integration KW - Gaussian Loop Processes KW - Papangelou Process KW - Polya Process Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-38706 SN - 978-3-86956-029-8 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - INPR A1 - Rafler, Mathias T1 - Gaussian loop- and polya processes : a point process approach N2 - Zufällige Punktprozesse beschreiben eine (zufällige) zeitliche Abfolge von Ereignissen oder eine (zufällige) räumliche Anordnung von Objekten. Deren wichtigster Vertreter ist der Poissonprozess. Der Poissonprozess zum Intensitätsmaß, das Lebesgue-Maß ordnet jedem Gebiet sein Volumen zu, erzeugt lokal, d.h in einem beschränkten Gebiet B, gerade eine mit dem Volumen von B poissonverteilte Anzahl von Punkten, die identisch und unabhängig voneinander in B plaziert werden; im Mittel ist diese Anzahl (B). Ersetzt man durch ein Vielfaches a, so wird diese Anzahl mit dem a-fachen Mittelwert erzeugt. Poissonprozesse, die im gesamten Raum unendlich viele Punkte realisieren, enthalten bereits in einer einzigen Stichprobe genügend Informationen, um Statistik betreiben zu können: Bedingt man lokal bzgl. der Anzahl der Teilchen einer Stichprobe, so fragt man nach allen Punktprozessen, die eine solche Beobachtung hätten liefern können. Diese sind Limespunktprozesse zu dieser Beobachtung. Kommt mehr als einer in Frage, spricht man von einem Phasenübergang. Da die Menge dieser Limespunktprozesse konvex ist, fragt man nach deren Extremalpunkten, dem Rand. Im ersten Teil wird ein Poissonprozess für ein physikalisches Teilchenmodell für Bosonen konstruiert. Dieses erzeugt sogenannte Loops, das sind geschlossene Polygonzüge, die dadurch charakterisiert sind, dass man an einem Ort mit einem Punkt startet, den mit einem normalverteilten Schritt läuft und dabei nach einer gegebenen, aber zufälligen Anzahl von Schritten zum Ausgangspunkt zurückkehrt. Für verschiedene Beobachtungen von Stichproben werden zugehörige Limespunktprozesse diskutiert. Diese Beobachtungen umfassen etwa das Zählen der Loops gemäaß ihrer Länge, das Zählen der Loops insgesamt, oder das Zählen der von den Loops gemachten Schritte. Jede Wahl zieht eine charakteristische Struktur der invarianten Punktprozesse nach sich. In allen hiesigen Fällen wird ein charakteristischer Phasenübergang gezeigt und Extremalpunkte werden als spezielle Poissonprozesse identifiziert. Insbesondere wird gezeigt, wie die Wahl der Beobachtung die Länge der Loops beeinflusst. Geometrische Eigenschaften dieser Poissonprozesse sind der Gegenstand des zweiten Teils der Arbeit. Die Technik der Palmschen Verteilungen eines Punktprozesses erlaubt es, unter den unendlich vielen Loops einer Realisierung den typischen Loop herauszupicken, dessen Geometrie dann untersucht wird. Eigenschaften sind unter anderem die euklidische Länge eines Schrittes oder, nimmt man mehrere aufeinander folgende Schritte, das Volumen des von ihnen definierten Simplex. Weiterhin wird gezeigt, dass der Schwerpunkt eines typischen Loops normalverteilt ist mit einer festen Varianz. Der dritte und letzte Teil befasst sich mit der Konstruktion, den Eigenschaften und der Statistik eines neuartigen Punktprozesses, der Polyascher Summenprozess genannt wird. Seine Konstruktion verallgemeinert das Prinzip der Polyaschen Urne: Im Gegensatz zum Poissonprozess, der alle Punkte unabhängig und vor allem identisch verteilt, werden hier die Punkte nacheinander derart verteilt, dass der Ort, an dem ein Punkt plaziert wird, eine Belohnung auf die Wahrscheinlichkeit bekommt, nach der nachfolgende Punkte verteilt werden. Auf diese Weise baut der Polyasche Summenprozess "Türmchen", indem sich verschiedene Punkte am selben Ort stapeln. Es wird gezeigt, dass dennoch grundlegende Eigenschaften mit denjenigen des Poissonprozesses übereinstimmen, dazu gehören unendliche Teilbarkeit sowie Unabhängigkeit der Zuwächse. Zudem werden sein Laplace-Funktional sowie seine Palmsche Verteilung bestimmt. Letztere zeigt, dass die Höhe der Türmchen gerade geometrisch verteilt ist. Abschließend werden wiederum Statistiken, nun für den Summenprozess, diskutiert. Je nach Art der Beobachtung von der Stichprobe, etwa Anzahl, Gesamthöhe der Türmchen oder beides, gibt es in jedem der drei Fälle charakteristische Limespunktprozesse und es stellt sich heraus, dass die zugehörigen Extremalverteilungen wiederum Polyasche Summenprozesse sind. T3 - Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint - 2009, 05 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51638 ER -