TY - JOUR A1 - van Soest, Heleen L. A1 - Aleluia Reis, Lara A1 - Baptista, Luiz Bernardo A1 - Bertram, Christoph A1 - Després, Jacques A1 - Drouet, Laurent A1 - den Elzen, Michel A1 - Fragkos, Panagiotis A1 - Fricko, Oliver A1 - Fujimori, Shinichiro A1 - Grant, Neil A1 - Harmsen, Mathijs A1 - Iyer, Gokul A1 - Keramidas, Kimon A1 - Köberle, Alexandre C. A1 - Kriegler, Elmar A1 - Malik, Aman A1 - Mittal, Shivika A1 - Oshiro, Ken A1 - Riahi, Keywan A1 - Roelfsema, Mark A1 - van Ruijven, Bas A1 - Schaeffer, Roberto A1 - Silva Herran, Diego A1 - Tavoni, Massimo A1 - Ünlü, Gamze A1 - Vandyck, Toon A1 - van Vuuren, Detlef P. T1 - Global roll-out of comprehensive policy measures may aid in bridging emissions gap JF - Nature communications N2 - Closing the emissions gap between Nationally Determined Contributions (NDCs) and the global emissions levels needed to achieve the Paris Agreement’s climate goals will require a comprehensive package of policy measures. National and sectoral policies can help fill the gap, but success stories in one country cannot be automatically replicated in other countries. They need to be adapted to the local context. Here, we develop a new Bridge scenario based on nationally relevant, short-term measures informed by interactions with country experts. These good practice policies are rolled out globally between now and 2030 and combined with carbon pricing thereafter. We implement this scenario with an ensemble of global integrated assessment models. We show that the Bridge scenario closes two-thirds of the emissions gap between NDC and 2 °C scenarios by 2030 and enables a pathway in line with the 2 °C goal when combined with the necessary long-term changes, i.e. more comprehensive pricing measures after 2030. The Bridge scenario leads to a scale-up of renewable energy (reaching 52%–88% of global electricity supply by 2050), electrification of end-uses, efficiency improvements in energy demand sectors, and enhanced afforestation and reforestation. Our analysis suggests that early action via good-practice policies is less costly than a delay in global climate cooperation. KW - climate-change mitigation KW - climate-change policy Y1 - 2021 U6 - https://doi.org/10.1038/s41467-021-26595-z N1 - Corrigendum: https://doi.org/10.1038/s41467-022-27969-7 VL - 12 IS - 1 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Bertram, Christoph A1 - Riahi, Keywan A1 - Hilaire, Jérôme A1 - Bosetti, Valentina A1 - Drouet, Laurent A1 - Fricko, Oliver A1 - Malik, Aman A1 - Nogueira, Larissa Pupo A1 - van der Zwaan, Bob A1 - van Ruijven, Bas A1 - van Vuuren, Detlef P. A1 - Weitzel, Matthias A1 - Longa, Francesco Dalla A1 - de Boer, Harmen-Sytze A1 - Emmerling, Johannes A1 - Fosse, Florian A1 - Fragkiadakis, Kostas A1 - Harmsen, Mathijs A1 - Keramidas, Kimon A1 - Kishimoto, Paul Natsuo A1 - Kriegler, Elmar A1 - Krey, Volker A1 - Paroussos, Leonidas A1 - Saygin, Deger A1 - Vrontisi, Zoi A1 - Luderer, Gunnar T1 - Energy system developments and investments in the decisive decade for the Paris Agreement goals JF - Environmental research letters N2 - The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets. KW - Paris Agreement KW - energy investments KW - mitigation policies KW - climate policy KW - integrated assessment modelling Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac09ae SN - 1748-9326 VL - 16 IS - 7 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Malik, Aman A1 - Bertram, Christoph A1 - Kriegler, Elmar A1 - Luderer, Gunnar T1 - Climate policy accelerates structural changes in energy employment JF - Energy policy N2 - The employment implications of decarbonizing the energy sector have received far less attention than the technology dimension of the transition, although being of critical importance to policymakers. In this work, we adapt a methodology based on employment factors to project future changes in quantity and composition of direct energy supply jobs for two scenarios - (1) relatively weak emissions reductions as pledged in the nationally determined contributions (NDC) and (2) stringent reductions compatible with the 1.5 °C target. We find that in the near-term the 1.5°C-compatible scenario results in a net increase in jobs through gains in solar and wind jobs in construction, installation, and manufacturing, despite significant losses in coal fuel supply; eventually leading to a peak in total direct energy jobs in 2025. In the long run, improvements in labour productivity lead to a decrease of total direct energy employment compared to today, however, total jobs are still higher in a 1.5 °C than in an NDC scenario. Operation and maintenance jobs dominate future jobs, replacing fuel supply jobs. The results point to the need for active policies aimed at retraining, both inside and outside the renewable energy sector, to complement climate policies within the concept of a “just transition”. KW - energy supply KW - employment KW - just transition KW - political feasibility KW - mitigation pathways KW - integrated assessment models Y1 - 2021 U6 - https://doi.org/10.1016/j.enpol.2021.112642 SN - 0301-4215 VL - 159 PB - Elsevier Science CY - Amsterdam ER -