TY - JOUR A1 - Brechun, Katherine Emily A1 - Arndt, Katja Maren A1 - Woolley, G. Andrew T1 - Selection of protein-protein interactions of desired affinities with a bandpass circuit JF - Journal of molecular biology : JMB N2 - We have developed a genetic circuit in Escherichia coli that can be used to select for protein-protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein-protein interaction strength to beta-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for beta-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein-protein interactions. We show that the circuit can be used to recover protein-protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein-protein interactions of defined strength. (C) 2018 Elsevier Ltd. All rights reserved. KW - synthetic biology KW - genetic circuit KW - biological engineering KW - protein-protein interactions KW - twin-arginine translocation KW - selection system Y1 - 2018 U6 - https://doi.org/10.1016/j.jmb.2018.11.011 SN - 0022-2836 SN - 1089-8638 VL - 431 IS - 2 SP - 391 EP - 400 PB - Elsevier CY - London ER - TY - THES A1 - Naseri, Gita T1 - Plant-derived transcription factors and their application for synthetic biology approaches in Saccharomyces cerevisiae T1 - Pflanzenbasierte Transkriptionsfaktoren und ihre Anwendungen in der synthetischen Biologie in Saccharomyces cerevisiae N2 - Bereits seit 9000 Jahren verwendet die Menschheit die Bäckerhefe Saccharomyces cerevisiae für das Brauen von Bier, aber erst seit 150 Jahren wissen wir, dass es sich bei diesem unermüdlichen Helfer im Brauprozess um einzellige, lebende Organismen handelt. Und die Bäckerhefe kann noch viel mehr. Im Rahmen des Forschungsgebietes der Synthetischen Biologie soll unter anderem die Bäckerhefe als innovatives Werkzeug für die biobasierte Herstellung verschiedenster Substanzen etabliert werden. Zu diesen Substanzen zählen unter anderem Feinchemikalien, Biokraftstoffe und Biopolymere sowie pharmakologisch und medizinisch interessante Pflanzenstoffe. Damit diese verschiedensten Substanzen in der Bäckerhefe hergestellt werden können, müssen große Mengen an Produktionsinformationen zum Beispiel aus Pflanzen in die Hefezellen übertragen werden. Darüber hinaus müssen die neu eingebrachten Biosynthesewege reguliert und kontrolliert in den Zellen ablaufen. Auch Optimierungsprozesse zur Erhöhung der Produktivität sind notwendig. Für alle diese Arbeitsschritte mangelt es bis heute an anwendungsbereiten Technologien und umfassenden Plattformen. Daher wurden im Rahmen dieser Doktorarbeit verschiedene Technologien und Plattformen zur Informationsübertragung, Regulation und Prozessoptimierung geplant und erzeugt. Für die Konstruktion von Biosynthesewegen in der Bäckerhefe wurde als erstes eine Plattform aus neuartigen Regulatoren und Kontrollelementen auf der Basis pflanzlicher Kontrollelemente generiert und charakterisiert. Im zweiten Schritt erfolgte die Entwicklung einer Technologie zur kombinatorischen Verwendung der Regulatoren in der Planung und Optimierung von Biosynthesewegen (COMPASS). Abschließend wurde eine Technologie für die Prozessoptimierung der veränderten Hefezellen entwickelt (CapRedit). Die Leistungsfähigkeit der entwickelten Plattformen und Technologien wurde durch eine Optimierung der Produktion von Carotenoiden (Beta-Carotin und Beta-Ionon) und Flavonoiden (Naringenin) in Hefezellen nachgewiesen. Die im Rahmen der Arbeit etablierten neuartigen Plattformen und innovativen Technologien sind ein wertvoller Grundbaustein für die Erweiterung der Nutzbarkeit der Bäckerhefe. Sie ermöglichen den Einsatz der Hefezellen in kosteneffizienten Produktionswegen und alternativen chemischen Wertschöpfungsketten. Dadurch können zum Beispiel Biokraftstoffe und pharmakologisch interessante Pflanzenstoffe unter Verwendung von nachwachsenden Rohstoffen, Reststoffen und Nebenprodukten hergestellt werden. Darüber hinaus ergeben sich Anwendungsmöglichkeiten zur Bodensanierung und Wasseraufbereitung. N2 - Plant-derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects where tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harbouring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver / reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast, than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC - EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF – DNA-binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast. COMPASS: Rapid combinatorial optimization of biochemical pathways based on artificial transcription factors We established a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) for controlling the expression of pathway genes, and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, we equipped COMPASS with multi-locus CRISPR/Cas9-mediated modification capacity. In its current realization, COMPASS allows combinatorial optimization of up to ten pathway genes, each transcriptionally controlled by nine different ATFs spanning a 10-fold difference in expression strength. The application of COMPASS was demonstrated by generating cell libraries producing beta-carotene and co-producing beta-ionone and biosensor-responsive naringenin. COMPASS will have many applications in other synthetic biology projects that require gene expression balancing. CaPRedit: Genome editing using CRISPR-Cas9 and plant-derived transcriptional regulators for the redirection of flux through the FPP branch-point in yeast. Technologies developed over the past decade have made Saccharomyces cerevisiae a promising platform for production of different natural products. We developed CRISPR/Ca9- and plant derived regulator-mediated genome editing approach (CaPRedit) to greatly accelerate strain modification and to facilitate very low to very high expression of key enzymes using inducible regulators. CaPRedit can be implemented to enhance the production of yeast endogenous or heterologous metabolites in the yeast S. cerevisiae. The CaPRedit system aims to faciltiate modification of multiple targets within a complex metabolic pathway through providing new tools for increased expression of genes encoding rate-limiting enzymes, decreased expression of essential genes, and removed expression of competing pathways. This approach is based on CRISPR/Cas9-mediated one-step double-strand breaks to integrate modules containing IPTG-inducible plant-derived artificial transcription factor and promoter pair(s) in a desired locus or loci. Here, we used CaPRedit to redirect the yeast endogenous metabolic flux toward production of farnesyl diphosphate (FPP), a central precursor of nearly all yeast isoprenoid products, by overexpression of the enzymes lead to produce FPP from glutamate. We found significantly higher beta-carotene accumulation in the CaPRedit-mediated modified strain than in the wild type (WT) strain. More specifically, CaPRedit_FPP 1.0 strain was generated, in which three genes involved in FPP synthesis, tHMG1, ERG20, and GDH2, were inducibly overexpressed under the control of strong plant-derived ATFPs. The beta–carotene accumulated in CaPRedit_FPP 1.0 strain to a level 1.3-fold higher than the previously reported optimized strain that carries the same overexpressed genes (as well as additional genetic modifications to redirect yeast endogenous metabolism toward FPP production). Furthermore, the genetic modifications implemented in CaPRedit_FPP 1.0 strain resulted in only a very small growth defect (growth rate relative to the WT is ~ -0.03). KW - synthetic biology KW - Saccharomyces cerevisiae KW - artificial transcription factor KW - combinatorial optimization KW - biosensor KW - DNA assembly KW - pathway engineering KW - artifizielle Transkriptionsfaktoren KW - Biosensor KW - kombinatorische Optimierung KW - DNA assembly KW - Saccharomyces cerevisiae KW - synthetische Biologie KW - pathway engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421514 ER - TY - GEN A1 - Lukan, Tjaša A1 - Machens, Fabian A1 - Coll, Anna A1 - Baebler, Špela A1 - Messerschmidt, Katrin A1 - Gruden, Kristina T1 - Plant X-tender BT - an extension of the AssemblX system for the assembly and expression of multigene constructs in plants T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scarfree and sequence-independent multigene assembly strategy AssemblX,based on overlapdepended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 990 KW - ligation cloning extract KW - DNA cloning KW - synthetic biology KW - multiple genes KW - vector system KW - transformation KW - recombination KW - protein KW - RNA KW - Methylation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446281 SN - 1866-8372 IS - 990 ER -