TY - THES A1 - Fandrich, Artur T1 - Untersuchung des Verhaltens von thermoresponsiven Polymeren auf Elektroden in Interaktion mit biomolekularen Systemen T1 - Investigation of the behavior of thermoresponsive polymers on electrodes in interaction with biomolecular systems N2 - Diese Arbeit befasst sich mit der Herstellung und Charakterisierung von thermoresponsiven Filmen auf Goldelektroden durch Fixierung eines bereits synthetisierten thermoresponsiven Polymers. Als Basis für die Entwicklung der responsiven Grenzfläche dienten drei unterschiedliche Copolymere (Polymere I, II und III) aus der Gruppe der thermisch schaltbaren Poly(oligo(ethylenglykol)methacrylate). Die turbidimetrischen Messungen der Copolymere in Lösungen haben gezeigt, dass der Trübungspunkt vom pH-Wert, der Gegenwart von Salzen sowie von der Ionenstärke der Lösung abhängig ist. Nach der Charakterisierung der Polymere in Lösung wurden Experimente der kovalenten Kopplung der Polymere I bis III an die Oberfläche der Gold-Elektroden durchgeführt. Während bei Polymeren I und II die Ankopplung auf einer Amidverbrückung basierte, wurde bei Polymer III als alternative Methode zur Immobilisierung eine photoinduzierte Anbindung unter gleichzeitiger Vernetzung gewählt. Der Nachweis der erfolgreichen Ankopplung erfolgte bei allen Polymeren elektrochemisch mittels Cyclovoltammetrie und Impedanzspektroskopie in K3/4[Fe(CN)6]-Lösungen. Wie die Ellipsometrie-Messungen zeigten, waren die erhaltenen Polymer-Filme unterschiedlich dick. Die Ankopplung über Amidverbrückung lieferte dünne Filme (10 – 15 nm), während der photovernetzte Film deutlich dicker war (70-80 nm) und die darunter liegende Oberfläche relativ gut isolierte. Elektrochemische Temperaturexperimente an Polymer-modifizierten Oberflächen in Lösungen in Gegenwart von K3/4[Fe(CN)6] zeigten, dass auch die immobilisierten Polymere I bis III responsives Temperaturverhalten zeigen. Bei Elektroden mit den immobilisierten Polymeren I und II ist der Temperaturverlauf der Parameterwerte diskontinuierlich – ab einem kritischen Punkt (37 °C für Polymer I und 45 °C für Polymer II) wird zunächst langsame Zunahme der Peakströme wird deutlich schneller. Das Temperaturverhalten von Polymer III ist dagegen bis 50 °C kontinuierlich, der Peakstrom sinkt hier durchgehend. Weiterhin wurde mit den auf Polymeren II und III basierten Elektroden deren Anwendung als responsive Matrix für Bioerkennungsreaktionen untersucht. Es wurde die Ankopplung von kleinen Biorezeptoren, TAG-Peptiden, an Polymer II- und Polymer III-modifizierten Elektroden durchgeführt. Das hydrophile FLAG-TAG-Peptid verändert das Temperaturverhalten des Polymer II-Films unwesentlich, da es die Hydrophilie des Netzwerkes nicht beeinflusst. Weiterhin wurde der Effekt der Ankopplung der ANTI-FLAG-TAG-Antikörper an FLAG-TAG-modifizierte Polymer II-Filme untersucht. Es konnte gezeigt werden, dass die Antikörper spezifisch an FLAG-TAG-modifiziertes Polymer II binden. Es wurde keine unspezifische Anbindung von ANTI-FLAG-TAG an Polymer II beobachtet. Die Temperaturexperimente haben gezeigt, dass die thermische Restrukturierung des Polymer II-FLAG-TAG-Filmes auch nach der Antikörper-Ankopplung noch stattfindet. Der Einfluss der ANTI-FLAG-TAG-Ankopplung ist gering, da der Unterschied in der Hydrophilie zwischen Polymer II und FLAG-TAG bzw. ANTI-FLAG-TAG zu gering ist. Für die Untersuchungen mit Polymer III-Elektroden wurde neben dem hydrophilen FLAG-TAG-Peptid das deutlich hydrophobere HA-TAG-Peptid ausgewählt. Wie im Falle der Polymer II Elektrode beeinflusst das gekoppelte FLAG-TAG-Peptid das Temperaturverhalten des Polymer III-Netzwerkes nur geringfügig. Die gemessenen Stromwerte sind geringer als bei der Polymer III-Elektrode. Das Temperaturverhalten der FLAG-TAG-Elektrode ähnelt dem der reinen Polymer III-Elektrode – die Stromwerte sinken kontinuierlich bis die Temperatur von ca. 40 °C erreicht ist, bei der ein Plateau beobachtet wird. Offensichtlich verändert FLAG-TAG auch in diesem Fall nicht wesentlich die Hydrophilie des Polymer III-Netzwerkes. Das an Polymer III-Elektroden gekoppelte hydrophobe HA-TAG-Peptid beeinflusst dagegen im starken Maße den Quellzustand des Netzwerkes. Die Ströme für die HA-TAG-Elektroden sind deutlich geringer als die für die FLAG-TAG-Polymer III-Elektroden, was auf geringeren Wassergehalt und dickeren Film zurückzuführen ist. Bereits ab 30 °C erfolgt der Anstieg von Stromwerten, der bei Polymer III- bzw. bei Polymer III-FLAG-TAG-Elektroden nicht beobachtet werden kann. Das gekoppelte hydrophobe HA-TAG-Peptid verdrängt Wasser aus dem Polymer III-Netzwerk, was in der Stauchung des Films bereits bei Raumtemperatur resultiert. Dies führt dazu, dass der Film im Laufe des Temperaturanstieges kaum noch komprimiert. Die Stromwerte steigen in diesem Fall entsprechend des Anstiegs der temperaturabhängigen Diffusion des Redoxpaares. Diese Untersuchungen zeigen, dass das HA-TAG-Peptid als Ankermolekül deutlich besser für eine potentielle Verwendung der Polymer III-Filme für sensorische Zwecke geeignet ist, da es sich deutlich in der Hydrophilie von Polymer III unterscheidet. N2 - This work describes the immobilization and characterization of thermoresponsive polymer films on gold electrodes. The immobilized films were thermoresponsive copolymers (polymers I, II and III) from the group of poly(oligo(ethylene glycol)methacrylates). After the synthesis, the aqueous solutions of copolymers in presence of (buffering) salts were investigated. The turbidimetry measurements revealed that the responsive behaviour of the polymers strongly depends on the pH and the ionic strength of the solution. After the studies in the solution, experiments on the covalent immobilization of the polymers on gold electrodes were performed. The fixation strategy for the polymers I and II was based on the amide coupling. The polymer III was immobilized by irradiation with UV-light. The successful immobilization was proved by cyclic voltammetry and electrochemical impedance spectroscopy measurements in solutions containing K3/4[Fe(CN)6]. The ellipsometry measurements showed that the obtained films were of different thickness. Polymer I and II films obtained from the amide coupling were thinner (10 – 15 nm) compared to photolytically immobilized polymer III films (70-80 nm). Electrochemical temperature experiments on polymer modified electrodes in K3/4[Fe(CN)6] solutions showed that the polymer I, II and III retain the responsivity after the fixation on the electrode surface. The thermoresponsive behaviour of the thin polymer I and II films is discontinuous – after the achieving of the critical temperature point (37 °C for polymer I and 45 °C for polymer II) the increase of the peak currents changes significantly and becomes faster hinting at the restructuration process. In contrast to this the temperature behaviour of the polymer III films is continuous in the temperature range between 25 and 50 °C. The peak currents for the polymer III electrodes decrease with increasing temperature. Furthermore, the application of polymer II and polymer III surfaces as a responsive platform for bio-recognition reactions was investigated. For this purpose, the coupling of small bioreceptors (tag peptides) on polymer films was performed. It was found that the hydrophilic FLAG-TAG peptide does not significantly alter the temperature behaviour of the polymer II film because it does not affect the hydrophilicity of the network. Additionally, the effect of coupling the ANTI-FLAG-TAG antibodies to FLAG-TAG-modified polymer II films was investigated. It was shown that the antibodies specifically bind to FLAG-TAG-modified polymer II. No nonspecific binding of ANTI-FLAG-TAG to polymer II was observed. The temperature experiments have shown that the thermal restructuring of the polymer II-FLAG-TAG film still takes place after antibody coupling. The influence of ANTI-FLAG-TAG coupling is low, since the difference in the hydrophilicity between polymer II and FLAG-TAG or ANTI-FLAG-TAG is too low. In addition to the hydrophilic FLAG-TAG peptide, the significantly more hydrophobic HA-TAG peptide was selected for the investigations with polymer III electrodes. As in the case of the polymer II electrode, the coupled FLAG-TAG peptide only slightly affects the temperature behaviour of the polymer III network. The measured current values are lower than for the polymer III electrode. The temperature behaviour of the FLAG-TAG electrode resembles that of the pure polymer III electrode - the current values sink continuously until the temperature of approx. 40 ° C is reached, at which a plateau is observed. Obviously, FLAG-TAG does not significantly alter the hydrophilicity of the polymer III network even in this case. The hydrophobic HA-TAG peptide coupled to polymer III electrodes, on the other hand, strongly influences the swelling state of the network. The currents for the HA-TAG electrodes are significantly lower than those for the FLAG-TAG polymer III electrodes, which is due to lower water content and thicker film. The increase in current values occurs at temperatures as low as 30 ° C, which cannot be observed with polymer III or with polymer III FLAG TAG electrodes. The coupled hydrophobic HA-TAG peptide displaces water from the polymer III network, resulting in the compression of the film even at room temperature. As a result, the film hardly compresses during the temperature rise. The current values increase in this case according to the increase in the temperature-dependent diffusion of the redox pair. These studies show that the HA-TAG peptide as an anchoring molecule is much better suited for a potential use of the polymer III films for sensory purposes since it is clearly different in the hydrophilicity of polymer III. KW - thermoresponsiv KW - Polymer KW - Biosensor KW - Cyclovoltammetrie KW - Elektrochemie KW - thermoresponsive KW - polymer KW - biosensor KW - cyclic voltammetry KW - electrochemistry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396551 ER - TY - THES A1 - Naseri, Gita T1 - Plant-derived transcription factors and their application for synthetic biology approaches in Saccharomyces cerevisiae T1 - Pflanzenbasierte Transkriptionsfaktoren und ihre Anwendungen in der synthetischen Biologie in Saccharomyces cerevisiae N2 - Bereits seit 9000 Jahren verwendet die Menschheit die Bäckerhefe Saccharomyces cerevisiae für das Brauen von Bier, aber erst seit 150 Jahren wissen wir, dass es sich bei diesem unermüdlichen Helfer im Brauprozess um einzellige, lebende Organismen handelt. Und die Bäckerhefe kann noch viel mehr. Im Rahmen des Forschungsgebietes der Synthetischen Biologie soll unter anderem die Bäckerhefe als innovatives Werkzeug für die biobasierte Herstellung verschiedenster Substanzen etabliert werden. Zu diesen Substanzen zählen unter anderem Feinchemikalien, Biokraftstoffe und Biopolymere sowie pharmakologisch und medizinisch interessante Pflanzenstoffe. Damit diese verschiedensten Substanzen in der Bäckerhefe hergestellt werden können, müssen große Mengen an Produktionsinformationen zum Beispiel aus Pflanzen in die Hefezellen übertragen werden. Darüber hinaus müssen die neu eingebrachten Biosynthesewege reguliert und kontrolliert in den Zellen ablaufen. Auch Optimierungsprozesse zur Erhöhung der Produktivität sind notwendig. Für alle diese Arbeitsschritte mangelt es bis heute an anwendungsbereiten Technologien und umfassenden Plattformen. Daher wurden im Rahmen dieser Doktorarbeit verschiedene Technologien und Plattformen zur Informationsübertragung, Regulation und Prozessoptimierung geplant und erzeugt. Für die Konstruktion von Biosynthesewegen in der Bäckerhefe wurde als erstes eine Plattform aus neuartigen Regulatoren und Kontrollelementen auf der Basis pflanzlicher Kontrollelemente generiert und charakterisiert. Im zweiten Schritt erfolgte die Entwicklung einer Technologie zur kombinatorischen Verwendung der Regulatoren in der Planung und Optimierung von Biosynthesewegen (COMPASS). Abschließend wurde eine Technologie für die Prozessoptimierung der veränderten Hefezellen entwickelt (CapRedit). Die Leistungsfähigkeit der entwickelten Plattformen und Technologien wurde durch eine Optimierung der Produktion von Carotenoiden (Beta-Carotin und Beta-Ionon) und Flavonoiden (Naringenin) in Hefezellen nachgewiesen. Die im Rahmen der Arbeit etablierten neuartigen Plattformen und innovativen Technologien sind ein wertvoller Grundbaustein für die Erweiterung der Nutzbarkeit der Bäckerhefe. Sie ermöglichen den Einsatz der Hefezellen in kosteneffizienten Produktionswegen und alternativen chemischen Wertschöpfungsketten. Dadurch können zum Beispiel Biokraftstoffe und pharmakologisch interessante Pflanzenstoffe unter Verwendung von nachwachsenden Rohstoffen, Reststoffen und Nebenprodukten hergestellt werden. Darüber hinaus ergeben sich Anwendungsmöglichkeiten zur Bodensanierung und Wasseraufbereitung. N2 - Plant-derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects where tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harbouring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver / reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast, than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC - EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF – DNA-binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast. COMPASS: Rapid combinatorial optimization of biochemical pathways based on artificial transcription factors We established a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) for controlling the expression of pathway genes, and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, we equipped COMPASS with multi-locus CRISPR/Cas9-mediated modification capacity. In its current realization, COMPASS allows combinatorial optimization of up to ten pathway genes, each transcriptionally controlled by nine different ATFs spanning a 10-fold difference in expression strength. The application of COMPASS was demonstrated by generating cell libraries producing beta-carotene and co-producing beta-ionone and biosensor-responsive naringenin. COMPASS will have many applications in other synthetic biology projects that require gene expression balancing. CaPRedit: Genome editing using CRISPR-Cas9 and plant-derived transcriptional regulators for the redirection of flux through the FPP branch-point in yeast. Technologies developed over the past decade have made Saccharomyces cerevisiae a promising platform for production of different natural products. We developed CRISPR/Ca9- and plant derived regulator-mediated genome editing approach (CaPRedit) to greatly accelerate strain modification and to facilitate very low to very high expression of key enzymes using inducible regulators. CaPRedit can be implemented to enhance the production of yeast endogenous or heterologous metabolites in the yeast S. cerevisiae. The CaPRedit system aims to faciltiate modification of multiple targets within a complex metabolic pathway through providing new tools for increased expression of genes encoding rate-limiting enzymes, decreased expression of essential genes, and removed expression of competing pathways. This approach is based on CRISPR/Cas9-mediated one-step double-strand breaks to integrate modules containing IPTG-inducible plant-derived artificial transcription factor and promoter pair(s) in a desired locus or loci. Here, we used CaPRedit to redirect the yeast endogenous metabolic flux toward production of farnesyl diphosphate (FPP), a central precursor of nearly all yeast isoprenoid products, by overexpression of the enzymes lead to produce FPP from glutamate. We found significantly higher beta-carotene accumulation in the CaPRedit-mediated modified strain than in the wild type (WT) strain. More specifically, CaPRedit_FPP 1.0 strain was generated, in which three genes involved in FPP synthesis, tHMG1, ERG20, and GDH2, were inducibly overexpressed under the control of strong plant-derived ATFPs. The beta–carotene accumulated in CaPRedit_FPP 1.0 strain to a level 1.3-fold higher than the previously reported optimized strain that carries the same overexpressed genes (as well as additional genetic modifications to redirect yeast endogenous metabolism toward FPP production). Furthermore, the genetic modifications implemented in CaPRedit_FPP 1.0 strain resulted in only a very small growth defect (growth rate relative to the WT is ~ -0.03). KW - synthetic biology KW - Saccharomyces cerevisiae KW - artificial transcription factor KW - combinatorial optimization KW - biosensor KW - DNA assembly KW - pathway engineering KW - artifizielle Transkriptionsfaktoren KW - Biosensor KW - kombinatorische Optimierung KW - DNA assembly KW - Saccharomyces cerevisiae KW - synthetische Biologie KW - pathway engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421514 ER - TY - JOUR A1 - Krylov, Andrey. V. A1 - Adamzig, H. A1 - Walter, A. D. A1 - Loechel, B. A1 - Kurth, E. A1 - Pulz, O. A1 - Szeponik, Jan A1 - Wegerich, Franziska A1 - Lisdat, Fred T1 - Parallel generation and detection of superoxide and hydrogen peroxide in a fluidic chip JF - Sensors and actuators : B, Chemical N2 - A fluidic chip system was developed, which combines a stable generation of superoxide radicals and hydrogen peroxide with their sensorial detection. The generation of both reactive oxygen species was achieved by immobilization of xanthine oxidase on controlled pore glass in a reaction chamber. Antioxidants can be introduced into the fluidic chip system by means of mixing chamber. The detection of both species is based on the amperometric principle using a biosensor chip with two working electrodes. As sensing protein for both electrodes cytochrome c was used. The novel system was designed for the quantification of the antioxidant efficiency of different potential scavengers of the respective reactive species in an aqueous medium. Several model antioxidants such as ascorbic acid or catalase have been tested under flow conditions. KW - biosensor KW - cytochrome c KW - flow system KW - reactive oxygen species KW - antioxidant Y1 - 2006 U6 - https://doi.org/10.1016/j.snb.2005.11.062 SN - 0925-4005 VL - 119 IS - 1 SP - 118 EP - 126 PB - Elsevier CY - Lausanne ER - TY - THES A1 - Streffer, Katrin T1 - Highly sensitive measurements of substrates and inhibitors on the basis of tyrosinase sensors and recycling systems N2 - Analytische Chemie heute meint nicht länger nur die große Messtechnik, die zeit- und kostenintensiv ist, die außerdem nur von qualifiziertem Personal zu bedienen ist und deren Resultate nur durch dieses Personal auswertbar sind. Meist erfordert diese sagen wir 'klassische analytische Messtechnik' auch noch spezielle Räumlichkeiten und oft eine relative große Menge an speziell vorbereiteten Proben. Neben dieser klassischen analytischen Messtechnik hat sich besonders in den letzten Jahren eine auf bestimmte Stoffgruppen und Anforderungen zugeschnittene Messtechnik durchgesetzt, die oft auch durch einen Laien bedient werden kann. Meist sind es sehr kleine Geräte. Auch die benötigten Probenvolumina sind klein und eine spezielle Probenvorbereitung ist nicht erforderlich. Ausserdem sind die Geräte einfach zu handhaben, billig sowohl in ihrer Herstellung als auch im Gebrauch und meist erlauben sie sogar eine kontinuierliche Messwerterfassung. Zahlreiche dieser in den letzten Jahren entwickelten Geräte greifen zurück auf 40 Jahre Forschung auf dem Gebiet der Biosensorik. Seit Clark und Lyons im Jahr 1962 in der Lage waren, mit einer einfachen Sauerstoffelektrode, ergänzt durch ein Enzym, Glucose zu messen, war die Entwicklung neuer Messtechnik nicht mehr aufzuhalten. Biosensoren, spezielle Messfühler, die aus einer Kombination aus biologischer Komponente (erlaubt eine spezifische Erkennung des Analyten auch ohne vorherige Reinigung der Probe) und einem physikalischen Messfühler (wandelt den primären physikochemischen Effekt in ein elektronisch messbares Signal um) bestehen, eroberten den Markt. Im Rahmen dieser Doktorarbeit wurden verschiedene Tyrosinasesensoren entwickelt, die je nach Herkunft und Eigenschaften der verwendeten Tyrosinase unterschiedliche Anforderungen erfüllen. Beispielsweise wurde einer dieser Tyrosinasesensoren für die Bestimmung phenolischer Verbindungen in Fluss- und Seewasserproben eingesetzt, und die mit diesem Sensor gemessenen Ergebnisse konnten sehr gut mit dem entsprechenden DIN-Test zur Bestimmung phenolischer Verbindungen korreliert werden. Ein anderer entwickelter Sensor zeigte eine sehr hohe Empfindlichkeit für Catecholamine, Substanzen die speziell in der medizinischen Diagnostik von Wichtigkeit sind. Ausserdem zeigten die ebenfalls im Rahmen dieser Doktorarbeit durchgeführten Untersuchungen zweier verschiedener Tyrosinasen, dass, will man in Zukunft noch empfindlichere Tyrosinasesensoren entwickeln, eine spezielle Tyrosinase (Tyrosinase aus Streptomyces antibioticus) die bessere Wahl sein wird, als die bisher im Bereich der Biosensorforschung verwendete Tyrosinase aus Agaricus bisporus. Desweiteren wurden erste Erfolge auf molekularbiologischem Gebiet erreicht, das heisst, dass Tyrosinasemutanten mit speziellen, vorher überlegten Eigenschaften, hergestellt werden sollen. Diese Erfolge können dazu genutzt werden, eine neue Generation an Tyrosinasesensoren zu entwickeln, Tyrosinasesensoren in denen Tyrosinase gerichtet gebunden werden kann, sowohl an den entsprechenden physikalischen Messfühler oder auch an ein anderes Enzym. Davon verspricht man sich deutlich minimierte Wege, die die zu bestimmende Substanz (oder deren Produkt) sonst zurücklegen müsste, was am Ende zu einer deutlich erhöhten Empfindlichkeit des resultierenden Biosensors führen sollte. N2 - Today, analytical chemistry does not longer consist of only the big measuring devices and methods which are time consuming and expensive, which can furthermore only be handled by the qualified staff and in addition the results can also only be evaluated by this qualified staff. Usually, this technique, which shall be described in the following as 'classic analytic measuring technique', requires also rooms equipped especially and often a relative big quantity of the test compounds which should be prepared especially. Beside this classic analytic measuring technique, limited on definite substance groups and requests, a new measuring technique has gained acceptance particularly within the last years, which one can often be used by a layman, too. Often the new measuring technique has very little pieces of equipment. The needed sample volumes are also small and a special sample preparation isn't required. In addition, the new measuring instruments are simple to handle. They are cheap both in their production and in the use and they permit even a continuous measurement recording usually. Numerous of this new measuring instruments base on the research in the field of Biosensorik during the last 40 years. Since Clark and Lyon in the year 1962 were able to measure glucose with a simple oxygen electrode, completed by an enzyme the development of the new measuring technique did not have to be held back any longer. Biosensors, special pickups which consists of a combination from a biological component (permits a specific recognition of the analyte also without purification of the sample previously) and a physical pickup (convert the primary physicochemical effect into an electronically measurable signal), conquered the market. In the context of this thesis different tyrosinasesensors were developed which fulfilling the various requests, depending on origin and features of the used tyrosinase. One of the tyrosinasesensors for example was used for quantification of phenolic compounds in river and sea water and the results could correlated very well with the corresponding DIN-test for the determination of phenolic compounds. An other developed tyrosinasesensor showed a very high sensitiveness for catecholamines, substances which are of special importance in the medical diagnostics. In addition, the investigations of two different tyrosinases, which were carried out also in the context of this thesis, have shown, that a special tyrosinase (tyrosinase from Streptomyces antibioticus) will be the better choice as tyrosinase from Agaricus bisporus, which is used in the area of biosensor research till now, if one wants to develop in future even more sensitive tyrosinasesensors. Furthermore, first successes became reached on a molecular biological field, the production of tyrosinasemutants with special, before well-considered features. These successes can be used to develop a new generation of tyrosinasesensors, tyrosinasesensors in which tyrosinase can be bound directionally both to the corresponding physical pickup or also to another enzyme. From this one expects to achieve ways minimized which the substance to be determined (or whose product) otherwise must cover. Finally, this should result in an clearly visible increase of sensitivity of the Biosensor. KW - Enzymelektrode ; Monophenolmonooxygenase KW - Tyrosinase KW - Phenol KW - Biosensor KW - Glucosedehydrogenase KW - Recyclingsystem KW - Tyrosinaseinhibitoren KW - Bioelektrokatalytisches Recycling KW - Biokatalytisches Recyc KW - tyrosinase KW - phenol KW - biosensor KW - glucose dehydrogenase KW - recycling system KW - tyrosinase inhibitors KW - bioelectrocatalytic recycling KW - biocatalytic recycling Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000632 ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Hammann, Tommy A1 - Huehn, Dominik A1 - Parak, Wolfgang J. A1 - Hildebrandt, Niko A1 - Löhmannsröben, Hans-Gerd T1 - Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing JF - Journal of biomedical optics N2 - Nanobioconjugates have been synthesized using cadmium selenide quantum dots (QDs), europium complexes (EuCs), and biotin. In those conjugates, long-lived photoluminescence (PL) is provided by the europium complexes, which efficiently transfer energy via Forster resonance energy transfer (FRET) to the QDs in close spatial proximity. As a result, the conjugates have a PL emission spectrum characteristic for QDs combined with the long PL decay time characteristic for EuCs. The nanobioconjugates synthesis strategy and photo-physical properties are described as well as their performance in a time-resolved streptavidin-biotin PL assay. In order to prepare the QD-EuC-biotin conjugates, first an amphiphilic polymer has been functionalized with the EuC and biotin. Then, the polymer has been brought onto the surface of the QDs (either QD655 or QD705) to provide functionality and to make the QDs water dispersible. Due to a short distance between EuC and QD, an efficient FRET can be observed. Additionally, the QD-EuC-biotin conjugates' functionality has been demonstrated in a PL assay yielding good signal discrimination, both from autofluorescence and directly excited QDs. These newly designed QD-EuC-biotin conjugates expand the class of highly sensitive tools for bioanalytical optical detection methods for diagnostic and imaging applications. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) KW - quantum dots KW - europium complex KW - amphiphilic polymer assembly KW - nanobioconjugate KW - biosensor KW - time-resolved fluorescence Y1 - 2014 U6 - https://doi.org/10.1117/1.JBO.19.10.101506 SN - 1083-3668 SN - 1560-2281 VL - 19 IS - 10 PB - SPIE CY - Bellingham ER - TY - THES A1 - Memczak, Henry T1 - Entwicklung influenzabindender Peptide für die Biosensorik T1 - Engineering of influenza-binding peptides for biosensing N2 - Das Influenzavirus infiziert Säugetiere und Vögel. Der erste Schritt im Infektionszyklus ist die Anbindung des Viruses über sein Oberflächenprotein Hämagglutinin (HA) an Zuckerstrukturen auf Epithelzellen des respiratorischen Traktes im Wirtsorganismus. Aus den drei komplementaritätsbestimmenden Regionen (complementarity determining regions, CDRs) der schweren Kette eines monoklonalen Hämagglutinin-bindenden Antikörpers wurden drei lineare Peptide abgeleitet. Die Bindungseigenschaften der drei Peptide wurden experimentell mittels Oberflächenplasmonenresonanzspektroskopie untersucht. Es zeigte sich, dass in Übereinstimmung mit begleitenden Molekulardynamik-Simulationen zwei der drei Peptide (PeB und PeC) analog zur Bindefähigkeit des Antikörpers in der Lage sind, Influenzaviren vom Stamm X31 (H3N2 A/Aichi/2/1968) zu binden. Die Interaktion des Peptids PeB, welches potentiell mit der konservierten Rezeptorbindestelle im HA interagiert, wurde anschließend näher charakterisiert. Die Detektion der Influenzaviren war unter geeigneten Immobilisationsbedingungen im diagnostisch relevanten Bereich möglich. Die Spezifität der PeB-Virus-Bindung wurde mittels geeigneter Kontrollen auf der Seite des Analyten und des Liganden nachgewiesen. Des Weiteren war das Peptid PeB in der Lage die Bindung von X31-Viren an Mimetika seines natürlichen Rezeptors zu inhibieren, was die spezifische Interaktion mit der Rezeptorbindungsstelle im Hämagglutinin belegt. Anschließend wurde die Primärsequenz von PeB durch eine vollständige Substitutionsanalyse im Microarray-Format hinsichtlich der Struktur-Aktivitäts-Beziehungen charakterisiert. Dies führte außerdem zu verbesserten Peptidvarianten mit erhöhter Affinität und breiterer Spezifität gegen aktuelle Influenzastämme verschiedener Serotypen (z.B. H1N1/2009, H5N1/2004, H7N1/2013). Schließlich konnte durch Verwendung einer in der Primärsequenz angepassten höher affinen Peptidvariante die Influenzainfektion in vitro inhibiert werden. Damit stellen die vom ursprünglichen Peptid PeB abgeleiteten Varianten Rezeptormoleküle in biosensorischen Testsystemen sowie potentielle Wirkstoffe dar. N2 - The influenza virus infects mammals and birds. The first step of the infection cycle comprises the attachment of the viral surface protein hemagglutinin (HA) on glycan structures on epithelial cells within the respiratory tract of the host organism. Starting from the complementarity determining regions (CDRs) of the heavy chain of a monoclonal hemagglutinin-binding antibody three linear peptides were derived. The binding properties of these peptides was characterized experimentally using surface plasmon resonance spectroscopy. In accordance with accompanying molecular dynamics simulation it was shown, that two of the three peptides (PeB and PeC) were able to bind the influenza virus of the strain X31 (H3N2 A/Aichi/2/1968) comparably to the antibody itself. The interaction of peptide PeB, which was supposed to bind to the conserved receptor binding site at the HA, was then characterized more in detail. The detection of influenza viruses was achieved within the diagnostically relevant concentration range using defined immobilization conditions. The specificity of the peptide-virus-binding was proven by appropriate control experiments. Additionally, peptide PeB was able to inhibit the binding of X31 viruses to mimics of its natural receptor. Furthermore the structure-activity-relationship within all the amino acids of peptide PeB was characterized using a full substitutional analysis in a microarray format. This led to improved peptidic variants, which were able to bind different influenza serotypes and inhibit the influenza infection in vitro. The found peptides and their variants can now be used as receptor molecules in biosensors and also represent potential drug candidates. KW - Influenza KW - Peptid KW - Biosensor KW - Virus KW - Interaktionsstudie KW - influenza KW - peptide KW - biosensor KW - virus KW - interaction analysis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-72470 ER - TY - THES A1 - Wegerich, Franziska T1 - Engineered human cytochrome c : investigation of superoxide and protein-protein interaction and application in bioelectronic systems T1 - Gentechnisch verändertes humanes Cytochrom c :Untersuchungen von Superoxid und Protein-Protein-Interaktionen sowie der Anwendung in bioelektronischen Systemen N2 - The aim of this thesis is the design, expression and purification of human cytochrome c mutants and their characterization with regard to electrochemical and structural properties as well as with respect to the reaction with the superoxide radical and the selected proteins sulfite oxidase from human and fungi bilirubin oxidase. All three interaction partners are studied here for the first time with human cyt c and with mutant forms of cyt c. A further aim is the incorporation of the different cyt c forms in two bioelectronic systems: an electrochemical superoxide biosensor with an enhanced sensitivity and a protein multilayer assembly with and without bilirubin oxidase on electrodes. The first part of the thesis is dedicated to the design, expression and characterization of the mutants. A focus is here the electrochemical characterization of the protein in solution and immobilized on electrodes. Further the reaction of these mutants with superoxide was investigated and the possible reaction mechanisms are discussed. In the second part of the work an amperometric superoxide biosensor with selected human cytochrome c mutants was constructed and the performance of the sensor electrodes was studied. The human wild-type and four of the five mutant electrodes could be applied successfully for the detection of the superoxide radical. In the third part of the thesis the reaction of horse heart cyt c, the human wild-type and seven human cyt c mutants with the two proteins sulfite oxidase and bilirubin oxidase was studied electrochemically and the influence of the mutations on the electron transfer reactions was discussed. Finally protein multilayer electrodes with different cyt form including the mutant forms G77K and N70K which exhibit different reaction rates towards BOD were investigated and BOD together with the wild-type and engineered cyt c was embedded in the multilayer assembly. The relevant electron transfer steps and the kinetic behavior of the multilayer electrodes are investigated since the functionality of electroactive multilayer assemblies with incorporated redox proteins is often limited by the electron transfer abilities of the proteins within the multilayer. The formation via the layer-by-layer technique and the kinetic behavior of the mono and bi-protein multilayer system are studied by SPR and cyclic voltammetry. In conclusion this thesis shows that protein engineering is a helpful instrument to study protein reactions as well as electron transfer mechanisms of complex bioelectronic systems (such as bi-protein multilayers). Furthermore, the possibility to design tailored recognition elements for the construction of biosensors with an improved performance is demonstrated. N2 - Ziel dieser Arbeit ist es genetisch veränderte Formen von humanem Cytochrom c herzustellen und diese einerseits hinsichtlich der Reaktion mit dem Sauerstoff-Radikal Superoxid aber auch mit anderen Proteinen zu untersuchen. Zusätzlich sollen die verschiedenen Protein-Mutanten in neuartige bioelektronische Systeme eingebracht werden. Es wurden insgesamt 20 Cytochrome c Mutanten designt, rekombinant exprimiert und aufgereinigt. Es konnte in dieser Arbeit gezeigt werden, dass sich die Reaktion von Cytochrom c mit dem negativ geladenen Superoxid durch gezielte Mutationen, die zusätzliche positive Ladungen in das Molekül bringen, um bis zu 30 % erhöhen lässt. Es wurde aber auch deutlich, dass andere Eigenschaften des Proteins sowie dessen Struktur durch die Mutationen geändert werden können. Cytochrom c Mutanten mit einer erhöhten Reaktionsrate mit Superoxid konnten erfolgreich in einen Superoxid-Biosensor mit erhöhter Sensitivität eingebracht werden. Weiterhin wurde einige Mutanten hinsichtlich Ihrer Interaktion mit den zwei Enzymen Sulfitoxidase und Bilirubinoxidase untersucht. Hier konnten ebenfalls unterschiedliche Reaktivitäten festgestellt werden. Schließlich wurden ausgewählte Protein-Varianten mit und ohne den zuvor untersuchten Enzymen in ein Multischicht-Elektroden-System eingebettet und dessen kinetisches Verhalten untersucht. Es wurde gefunden, dass die Schnelligkeit mit der Cytochrom c mit sich selbst Elektronen austauschen kann, eine Limitierung der Größenordnung der katalytischen Ströme darstellt. Diese Selbstaustausschrate wurde durch die eingeführten Mutationen verändert. So verdeutlicht diese Arbeit, dass „Protein-Engineering“ ein gutes Hilfsmittel sein kann, um einerseits Proteinreaktionen und komplexe Elektronentransferreaktionen in Multischichten zu untersuchen, aber auch ein potentes Werkzeug darstellt mit dem zugeschnittene Biokomponenten für Sensoren mit erhöhter Leistungsfähigkeit generiert werden können. KW - Cytochrom c KW - Protein-Engineering KW - Elektrochemie KW - Biosensor KW - Superoxid KW - cytochrome c KW - protein engineering KW - electrochemistry KW - biosensor KW - superoxide Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-50782 ER - TY - JOUR A1 - Dongmo, Saustin A1 - Leyk, Janina A1 - Dosche, Carsten A1 - Richter-Landsberg, Christiane A1 - Wollenberger, Ursula A1 - Wittstock, Gunther T1 - Electrogeneration of O-2(center dot-) and H2O2 Using Polymer-modified Microelectrodes in the Environment of Living Cells JF - Electroanalysis : an international journal devoted to fundamental and practical aspects of electroanalysis N2 - Microelectrodes modified with electropolymerized plumbagin (PLG) were used for the generation of superoxide radical (O-2(center dot-)) and hydrogen peroxide (H2O2) during oxygen reduction reaction (ORR) in an aqueous medium, specifically in serum-free cell culture media. This is enabled by the specific design of a polymer film on the microelectrode. The generation and diffusion of O-2(center dot-) during electrocatalytic ORR at a positionable PLG polymer-modified microelectrode was followed by fluorescence microscopy with the selective dye 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and by amperometric detection using a cytochrome c-modified electrode at + 0.13 V. H2O2 production, either by direct oxygen reduction or as product of O-2(center dot-) disproportionation, was monitored by the reaction with Amplex UltraRed. The PLG polymer-modified microelectrodes were used to expose mammalian B6-RPE07 retinal cells to defined local fluxes of reactive oxygen species (ROS), and cellular responses and morphological alterations were observed. The use of a controllable source of ROS opens many possibilities to study how living cells respond to the presence of a certain flux of specific ROS. KW - reactive oxygen species KW - microelectrode KW - scanning electrochemical microscopy KW - biosensor KW - polymer-modified electrode KW - oxygen reduction reaction Y1 - 2016 U6 - https://doi.org/10.1002/elan.201600267 SN - 1040-0397 SN - 1521-4109 VL - 28 SP - 2400 EP - 2407 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tadjoung Waffo, Armel Franklin A1 - Mitrova, Biljana A1 - Tiedemann, Kim A1 - Iobbi-Nivol, Chantal A1 - Leimkühler, Silke A1 - Wollenberger, Ulla T1 - Electrochemical trimethylamine n-oxide biosensor with enzyme-based oxygen-scavenging membrane for long-term operation under ambient air JF - Biosensors : open access journal N2 - An amperometric trimethylamine N-oxide (TMAO) biosensor is reported, where TMAO reductase (TorA) and glucose oxidase (GOD) and catalase (Cat) were immobilized on the electrode surface, enabling measurements of mediated enzymatic TMAO reduction at low potential under ambient air conditions. The oxygen anti-interference membrane composed of GOD, Cat and polyvinyl alcohol (PVA) hydrogel, together with glucose concentration, was optimized until the O-2 reduction current of a Clark-type electrode was completely suppressed for at least 3 h. For the preparation of the TMAO biosensor, Escherichia coli TorA was purified under anaerobic conditions and immobilized on the surface of a carbon electrode and covered by the optimized O-2 scavenging membrane. The TMAO sensor operates at a potential of -0.8 V vs. Ag/AgCl (1 M KCl), where the reduction of methylviologen (MV) is recorded. The sensor signal depends linearly on TMAO concentrations between 2 mu M and 15 mM, with a sensitivity of 2.75 +/- 1.7 mu A/mM. The developed biosensor is characterized by a response time of about 33 s and an operational stability over 3 weeks. Furthermore, measurements of TMAO concentration were performed in 10% human serum, where the lowest detectable concentration is of 10 mu M TMAO. KW - trimethylamine N-oxide KW - biosensor KW - TMAO-reductase KW - oxygen scavenger KW - immobilized enzyme KW - multienzyme electrode KW - viologen Y1 - 2021 U6 - https://doi.org/10.3390/bios11040098 SN - 2079-6374 VL - 11 IS - 4 PB - MDPI CY - Basel ER - TY - JOUR A1 - Badalyan, Artavazd A1 - Dierich, Marlen A1 - Stiba, Konstanze A1 - Schwuchow, Viola A1 - Leimkühler, Silke A1 - Wollenberger, Ulla T1 - Electrical wiring of the aldehyde oxidoreductase PaoABC with a polymer containing osmium redox centers BT - biosensors for benzaldehyde and GABA JF - Biosensors N2 - Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer. KW - redox polymer KW - aldehyde oxidoreductase KW - ionic strength KW - benzaldehyde KW - GABA KW - biosensor Y1 - 2014 U6 - https://doi.org/10.3390/bios4040403 VL - 4 IS - 4 SP - 403 EP - 421 PB - MDPI CY - Basel ER -