TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Maximum Possible and the Maximum Expected Earthquake Magnitude for Production-Induced Earthquakes at the Gas Field in Groningen, The Netherlands JF - Bulletin of the Seismological Society of America N2 - The Groningen gas field serves as a natural laboratory for production-induced earthquakes, because no earthquakes were observed before the beginning of gas production. Increasing gas production rates resulted in growing earthquake activity and eventually in the occurrence of the 2012M(w) 3.6 Huizinge earthquake. At least since this event, a detailed seismic hazard and risk assessment including estimation of the maximum earthquake magnitude is considered to be necessary to decide on the future gas production. In this short note, we first apply state-of-the-art methods of mathematical statistics to derive confidence intervals for the maximum possible earthquake magnitude m(max). Second, we calculate the maximum expected magnitude M-T in the time between 2016 and 2024 for three assumed gas-production scenarios. Using broadly accepted physical assumptions and 90% confidence level, we suggest a value of m(max) 4.4, whereas M-T varies between 3.9 and 4.3, depending on the production scenario. Y1 - 2016 U6 - https://doi.org/10.1785/0120160220 SN - 0037-1106 SN - 1943-3573 VL - 106 SP - 2917 EP - 2921 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Salamat, Mona A1 - Zöller, Gert A1 - Zare, Mehdi A1 - Amini, Mortaza T1 - The maximum expected earthquake magnitudes in different future time intervals of six seismotectonic zones of Iran and its surroundings JF - Journal of seismology N2 - One of the crucial components in seismic hazard analysis is the estimation of the maximum earthquake magnitude and associated uncertainty. In the present study, the uncertainty related to the maximum expected magnitude mu is determined in terms of confidence intervals for an imposed level of confidence. Previous work by Salamat et al. (Pure Appl Geophys 174:763-777, 2017) shows the divergence of the confidence interval of the maximum possible magnitude m(max) for high levels of confidence in six seismotectonic zones of Iran. In this work, the maximum expected earthquake magnitude mu is calculated in a predefined finite time interval and imposed level of confidence. For this, we use a conceptual model based on a doubly truncated Gutenberg-Richter law for magnitudes with constant b-value and calculate the posterior distribution of mu for the time interval T-f in future. We assume a stationary Poisson process in time and a Gutenberg-Richter relation for magnitudes. The upper bound of the magnitude confidence interval is calculated for different time intervals of 30, 50, and 100 years and imposed levels of confidence alpha = 0.5, 0.1, 0.05, and 0.01. The posterior distribution of waiting times T-f to the next earthquake with a given magnitude equal to 6.5, 7.0, and7.5 are calculated in each zone. In order to find the influence of declustering, we use the original and declustered version of the catalog. The earthquake catalog of the territory of Iran and surroundings are subdivided into six seismotectonic zones Alborz, Azerbaijan, Central Iran, Zagros, Kopet Dagh, and Makran. We assume the maximum possible magnitude m(max) = 8.5 and calculate the upper bound of the confidence interval of mu in each zone. The results indicate that for short time intervals equal to 30 and 50 years and imposed levels of confidence 1 - alpha = 0.95 and 0.90, the probability distribution of mu is around mu = 7.16-8.23 in all seismic zones. KW - Maximum expected earthquake magnitude KW - Future time interval KW - Level of confidence KW - Iran Y1 - 2018 U6 - https://doi.org/10.1007/s10950-018-9780-7 SN - 1383-4649 SN - 1573-157X VL - 22 IS - 6 SP - 1485 EP - 1498 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias A1 - Hainzl, Sebastian T1 - The Maximum Earthquake Magnitude in a Time Horizon: Theory and Case Studies JF - Bulletin of the Seismological Society of America N2 - We show how the maximum magnitude within a predefined future time horizon may be estimated from an earthquake catalog within the context of Gutenberg-Richter statistics. The aim is to carry out a rigorous uncertainty assessment, and calculate precise confidence intervals based on an imposed level of confidence a. In detail, we present a model for the estimation of the maximum magnitude to occur in a time interval T-f in the future, given a complete earthquake catalog for a time period T in the past and, if available, paleoseismic events. For this goal, we solely assume that earthquakes follow a stationary Poisson process in time with unknown productivity Lambda and obey the Gutenberg-Richter law in magnitude domain with unknown b-value. The random variables. and b are estimated by means of Bayes theorem with noninformative prior distributions. Results based on synthetic catalogs and on retrospective calculations of historic catalogs from the highly active area of Japan and the low-seismicity, but high-risk region lower Rhine embayment (LRE) in Germany indicate that the estimated magnitudes are close to the true values. Finally, we discuss whether the techniques can be extended to meet the safety requirements for critical facilities such as nuclear power plants. For this aim, the maximum magnitude for all times has to be considered. In agreement with earlier work, we find that this parameter is not a useful quantity from the viewpoint of statistical inference. Y1 - 2013 U6 - https://doi.org/10.1785/0120120013 SN - 0037-1106 VL - 103 IS - 2A SP - 860 EP - 875 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias A1 - Hainzl, Sebastian A1 - Zhuang, Jiancang T1 - The largest expected earthquake magnitudes in Japan: The statistical perspective JF - Bulletin of the Seismological Society of America N2 - Earthquake catalogs are probably the most informative data source about spatiotemporal seismicity evolution. The catalog quality in one of the most active seismogenic zones in the world, Japan, is excellent, although changes in quality arising, for example, from an evolving network are clearly present. Here, we seek the best estimate for the largest expected earthquake in a given future time interval from a combination of historic and instrumental earthquake catalogs. We extend the technique introduced by Zoller et al. (2013) to estimate the maximum magnitude in a time window of length T-f for earthquake catalogs with varying level of completeness. In particular, we consider the case in which two types of catalogs are available: a historic catalog and an instrumental catalog. This leads to competing interests with respect to the estimation of the two parameters from the Gutenberg-Richter law, the b-value and the event rate lambda above a given lower-magnitude threshold (the a-value). The b-value is estimated most precisely from the frequently occurring small earthquakes; however, the tendency of small events to cluster in aftershocks, swarms, etc. violates the assumption of a Poisson process that is used for the estimation of lambda. We suggest addressing conflict by estimating b solely from instrumental seismicity and using large magnitude events from historic catalogs for the earthquake rate estimation. Applying the method to Japan, there is a probability of about 20% that the maximum expected magnitude during any future time interval of length T-f = 30 years is m >= 9.0. Studies of different subregions in Japan indicates high probabilities for M 8 earthquakes along the Tohoku arc and relatively low probabilities in the Tokai, Tonankai, and Nankai region. Finally, for scenarios related to long-time horizons and high-confidence levels, the maximum expected magnitude will be around 10. Y1 - 2014 U6 - https://doi.org/10.1785/0120130103 SN - 0037-1106 SN - 1943-3573 VL - 104 IS - 2 SP - 769 EP - 779 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Zöller, Gert A1 - Ullah, Shahid A1 - Bindi, Dino A1 - Parolai, Stefano A1 - Mikhailova, Natalya T1 - The largest expected earthquake magnitudes in Central Asia BT - statistical inference from an earthquake catalogue with uncertain magnitudes JF - Seismicity, fault rupture and earthquake hazards in slowly deforming regions N2 - The knowledge of the largest expected earthquake magnitude in a region is one of the key issues in probabilistic seismic hazard calculations and the estimation of worst-case scenarios. Earthquake catalogues are the most informative source of information for the inference of earthquake magnitudes. We analysed the earthquake catalogue for Central Asia with respect to the largest expected magnitudes m(T) in a pre-defined time horizon T-f using a recently developed statistical methodology, extended by the explicit probabilistic consideration of magnitude errors. For this aim, we assumed broad error distributions for historical events, whereas the magnitudes of recently recorded instrumental earthquakes had smaller errors. The results indicate high probabilities for the occurrence of large events (M >= 8), even in short time intervals of a few decades. The expected magnitudes relative to the assumed maximum possible magnitude are generally higher for intermediate-depth earthquakes (51-300 km) than for shallow events (0-50 km). For long future time horizons, for example, a few hundred years, earthquakes with M >= 8.5 have to be taken into account, although, apart from the 1889 Chilik earthquake, it is probable that no such event occurred during the observation period of the catalogue. Y1 - 2017 SN - 978-1-86239-745-3 SN - 978-1-86239-964-8 U6 - https://doi.org/10.1144/SP432.3 SN - 0305-8719 VL - 432 SP - 29 EP - 40 PB - The Geological Society CY - London ER - TY - JOUR A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - The Earthquake History in a Fault Zone Tells Us Almost Nothing about m(max) JF - Seismological research letters N2 - In the present study, we summarize and evaluate the endeavors from recent years to estimate the maximum possible earthquake magnitude m(max) from observed data. In particular, we use basic and physically motivated assumptions to identify best cases and worst cases in terms of lowest and highest degree of uncertainty of m(max). In a general framework, we demonstrate that earthquake data and earthquake proxy data recorded in a fault zone provide almost no information about m(max) unless reliable and homogeneous data of a long time interval, including several earthquakes with magnitude close to m(max), are available. Even if detailed earthquake information from some centuries including historic and paleoearthquakes are given, only very few, namely the largest events, will contribute at all to the estimation of m(max), and this results in unacceptably high uncertainties. As a consequence, estimators of m(max) in a fault zone, which are based solely on earthquake-related information from this region, have to be dismissed. Y1 - 2016 U6 - https://doi.org/10.1785/0220150176 SN - 0895-0695 SN - 1938-2057 VL - 87 SP - 132 EP - 137 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Engbert, Ralf A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Kurths, Jürgen T1 - Testing for unstable periodic orbits to characterize spatiotemporal dynamics Y1 - 1998 ER - TY - JOUR A1 - Richter, Gudrun A1 - Hainzl, Sebastian A1 - Dahm, Torsten A1 - Zöller, Gert T1 - Stress-based, statistical modeling of the induced seismicity at the Groningen gas field BT - the Netherlands JF - Environmental earth sciences N2 - Groningen is the largest onshore gas field under production in Europe. The pressure depletion of the gas field started in 1963. In 1991, the first induced micro-earthquakes have been located at reservoir level with increasing rates in the following decades. Most of these events are of magnitude less than 2.0 and cannot be felt. However, maximum observed magnitudes continuously increased over the years until the largest, significant event with ML=3.6 was recorded in 2014, which finally led to the decision to reduce the production. This causal sequence displays the crucial role of understanding and modeling the relation between production and induced seismicity for economic planing and hazard assessment. Here we test whether the induced seismicity related to gas exploration can be modeled by the statistical response of fault networks with rate-and-state-dependent frictional behavior. We use the long and complete local seismic catalog and additionally detailed information on production-induced changes at the reservoir level to test different seismicity models. Both the changes of the fluid pressure and of the reservoir compaction are tested as input to approximate the Coulomb stress changes. We find that the rate-and-state model with a constant tectonic background seismicity rate can reproduce the observed long delay of the seismicity onset. In contrast, so-called Coulomb failure models with instantaneous earthquake nucleation need to assume that all faults are initially far from a critical state of stress to explain the delay. Our rate-and-state model based on the fluid pore pressure fits the spatiotemporal pattern of the seismicity best, where the fit further improves by taking the fault density and orientation into account. Despite its simplicity with only three free parameters, the rate-and-state model can reproduce the main statistical features of the observed activity. KW - induced seismicity KW - modeling KW - statistical seismology KW - forecast Y1 - 2020 U6 - https://doi.org/10.1007/s12665-020-08941-4 SN - 1866-6280 SN - 1866-6299 VL - 79 IS - 11 PB - Springer CY - New York ER - TY - JOUR A1 - Wang, Lifeng A1 - Hainzl, Sebastian A1 - Zöller, Gert A1 - Holschneider, Matthias T1 - Stress- and aftershock-constrained joint inversions for coseismic and postseismic slip applied to the 2004 M6.0 Parkfield earthquake JF - Journal of geophysical research : Solid earth N2 - Both aftershocks and geodetically measured postseismic displacements are important markers of the stress relaxation process following large earthquakes. Postseismic displacements can be related to creep-like relaxation in the vicinity of the coseismic rupture by means of inversion methods. However, the results of slip inversions are typically non-unique and subject to large uncertainties. Therefore, we explore the possibility to improve inversions by mechanical constraints. In particular, we take into account the physical understanding that postseismic deformation is stress-driven, and occurs in the coseismically stressed zone. We do joint inversions for coseismic and postseismic slip in a Bayesian framework in the case of the 2004 M6.0 Parkfield earthquake. We perform a number of inversions with different constraints, and calculate their statistical significance. According to information criteria, the best result is preferably related to a physically reasonable model constrained by the stress-condition (namely postseismic creep is driven by coseismic stress) and the condition that coseismic slip and large aftershocks are disjunct. This model explains 97% of the coseismic displacements and 91% of the postseismic displacements during day 1-5 following the Parkfield event, respectively. It indicates that the major postseismic deformation can be generally explained by a stress relaxation process for the Parkfield case. This result also indicates that the data to constrain the coseismic slip model could be enriched postseismically. For the 2004 Parkfield event, we additionally observe asymmetric relaxation process at the two sides of the fault, which can be explained by material contrast ratio across the fault of similar to 1.15 in seismic velocity. Y1 - 2012 U6 - https://doi.org/10.1029/2011JB009017 SN - 2169-9313 SN - 2169-9356 VL - 117 PB - American Geophysical Union CY - Washington ER - TY - CHAP A1 - Hainzl, Sebastian A1 - Scherbaum, Frank A1 - Zöller, Gert T1 - Spatiotemporal earthquake patterns N2 - Interdisziplinäres Zentrum für Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006 Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7267 N1 - [Poster] ER -