TY - GEN A1 - Kneis, David A1 - Abon, Catherine Cristobal A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Verification of short-term runoff forecasts for a small Philippine basin (Marikina) T2 - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Storm runoff from the Marikina River Basin frequently causes flood events in the Philippine capital region Metro Manila. This paper presents and evaluates a system to predict short-term runoff from the upper part of that basin (380km(2)). It was designed as a possible component of an operational warning system yet to be installed. For the purpose of forecast verification, hindcasts of streamflow were generated for a period of 15 months with a time-continuous, conceptual hydrological model. The latter was fed with real-time observations of rainfall. Both ground observations and weather radar data were tested as rainfall forcings. The radar-based precipitation estimates clearly outperformed the raingauge-based estimates in the hydrological verification. Nevertheless, the quality of the deterministic short-term runoff forecasts was found to be limited. For the radar-based predictions, the reduction of variance for lead times of 1, 2 and 3hours was 0.61, 0.62 and 0.54, respectively, with reference to a no-forecast scenario, i.e. persistence. The probability of detection for major increases in streamflow was typically less than 0.5. Given the significance of flood events in the Marikina Basin, more effort needs to be put into the reduction of forecast errors and the quantification of remaining uncertainties. Y1 - 2016 U6 - https://doi.org/10.1080/02626667.2016.1183773 SN - 0262-6667 SN - 2150-3435 VL - 62 SP - 205 EP - 216 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Heistermann, Maik A1 - Crisologo, Irene A1 - Abon, Catherine Cristobal A1 - Racoma, B. A. A1 - Jacobi, S. A1 - Servando, N. T. A1 - David, C. P. C. A1 - Bronstert, Axel T1 - Using the new Philippine radar network to reconstruct the Habagat of August 2012 monsoon event around Metropolitan Manila JF - Natural hazards and earth system sciences N2 - From 6 to 9 August 2012, intense rainfall hit the northern Philippines, causing massive floods in Metropolitan Manila and nearby regions. Local rain gauges recorded almost 1000mm within this period. However, the recently installed Philippine network of weather radars suggests that Metropolitan Manila might have escaped a potentially bigger flood just by a whisker, since the centre of mass of accumulated rainfall was located over Manila Bay. A shift of this centre by no more than 20 km could have resulted in a flood disaster far worse than what occurred during Typhoon Ketsana in September 2009. Y1 - 2013 U6 - https://doi.org/10.5194/nhess-13-653-2013 SN - 1561-8633 VL - 13 IS - 3 SP - 653 EP - 657 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Crisologo, Irene A1 - Heistermann, Maik T1 - Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 863 KW - Weather KW - Band KW - Reflectivity KW - Algorithm KW - Uncertainties KW - Methodology KW - Kwajalein Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459630 SN - 1866-8372 IS - 863 ER - TY - JOUR A1 - Crisologo, Irene A1 - Heistermann, Maik T1 - Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms JF - Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union N2 - Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations. Y1 - 2020 U6 - https://doi.org/10.5194/amt-13-645-2020 SN - 1867-1381 SN - 1867-8548 VL - 13 IS - 2 SP - 645 EP - 659 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Crisologo, Irene A1 - Heistermann, Maik T1 - Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms JF - Atmospheric Measurement Techniques N2 - Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations. KW - Weather KW - Band KW - Reflectivity KW - Algorithm KW - Uncertainties KW - Methodology KW - Kwajalein Y1 - 2020 U6 - https://doi.org/10.5194/amt-13-645-2020 SN - 1867-1381 SN - 1867-8548 VL - 13 IS - 2 SP - 645 EP - 659 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany JF - Natural Hazards and Earth System Sciences N2 - Data-driven models have been recently suggested to surrogate computationally expensive hydrodynamic models to map flood hazards. However, most studies focused on developing models for the same area or the same precipitation event. It is thus not obvious how transferable the models are in space. This study evaluates the performance of a convolutional neural network (CNN) based on the U-Net architecture and the random forest (RF) algorithm to predict flood water depth, the models' transferability in space and performance improvement using transfer learning techniques. We used three study areas in Berlin to train, validate and test the models. The results showed that (1) the RF models outperformed the CNN models for predictions within the training domain, presumable at the cost of overfitting; (2) the CNN models had significantly higher potential than the RF models to generalize beyond the training domain; and (3) the CNN models could better benefit from transfer learning technique to boost their performance outside training domains than RF models. Y1 - 2023 U6 - https://doi.org/10.5194/nhess-23-809-2023 SN - 1684-9981 SN - 1561-8633 VL - 23 IS - 2 SP - 809 EP - 822 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Transferability of data-driven models to predict urban pluvial flood water depth in Berlin, Germany T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Data-driven models have been recently suggested to surrogate computationally expensive hydrodynamic models to map flood hazards. However, most studies focused on developing models for the same area or the same precipitation event. It is thus not obvious how transferable the models are in space. This study evaluates the performance of a convolutional neural network (CNN) based on the U-Net architecture and the random forest (RF) algorithm to predict flood water depth, the models' transferability in space and performance improvement using transfer learning techniques. We used three study areas in Berlin to train, validate and test the models. The results showed that (1) the RF models outperformed the CNN models for predictions within the training domain, presumable at the cost of overfitting; (2) the CNN models had significantly higher potential than the RF models to generalize beyond the training domain; and (3) the CNN models could better benefit from transfer learning technique to boost their performance outside training domains than RF models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1323 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589168 SN - 1866-8372 IS - 1323 SP - 809 EP - 822 ER - TY - JOUR A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Costa Tomaz de Souza, Arthur A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany JF - Geomatics, natural hazards and risk N2 - Identifying urban pluvial flood-prone areas is necessary but the application of two-dimensional hydrodynamic models is limited to small areas. Data-driven models have been showing their ability to map flood susceptibility but their application in urban pluvial flooding is still rare. A flood inventory (4333 flooded locations) and 11 factors which potentially indicate an increased hazard for pluvial flooding were used to implement convolutional neural network (CNN), artificial neural network (ANN), random forest (RF) and support vector machine (SVM) to: (1) Map flood susceptibility in Berlin at 30, 10, 5, and 2 m spatial resolutions. (2) Evaluate the trained models' transferability in space. (3) Estimate the most useful factors for flood susceptibility mapping. The models' performance was validated using the Kappa, and the area under the receiver operating characteristic curve (AUC). The results indicated that all models perform very well (minimum AUC = 0.87 for the testing dataset). The RF models outperformed all other models at all spatial resolutions and the RF model at 2 m spatial resolution was superior for the present flood inventory and predictor variables. The majority of the models had a moderate performance for predictions outside the training area based on Kappa evaluation (minimum AUC = 0.8). Aspect and altitude were the most influencing factors on the image-based and point-based models respectively. Data-driven models can be a reliable tool for urban pluvial flood susceptibility mapping wherever a reliable flood inventory is available. KW - Urban pluvial flood susceptibility KW - convolutional neural network KW - deep KW - learning KW - random forest KW - support vector machine KW - spatial resolution; KW - flood predictors Y1 - 2022 U6 - https://doi.org/10.1080/19475705.2022.2097131 SN - 1947-5705 SN - 1947-5713 VL - 13 IS - 1 SP - 1640 EP - 1662 PB - Taylor & Francis CY - London ER - TY - GEN A1 - Seleem, Omar A1 - Ayzel, Georgy A1 - Costa Tomaz de Souza, Arthur A1 - Bronstert, Axel A1 - Heistermann, Maik T1 - Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Identifying urban pluvial flood-prone areas is necessary but the application of two-dimensional hydrodynamic models is limited to small areas. Data-driven models have been showing their ability to map flood susceptibility but their application in urban pluvial flooding is still rare. A flood inventory (4333 flooded locations) and 11 factors which potentially indicate an increased hazard for pluvial flooding were used to implement convolutional neural network (CNN), artificial neural network (ANN), random forest (RF) and support vector machine (SVM) to: (1) Map flood susceptibility in Berlin at 30, 10, 5, and 2 m spatial resolutions. (2) Evaluate the trained models' transferability in space. (3) Estimate the most useful factors for flood susceptibility mapping. The models' performance was validated using the Kappa, and the area under the receiver operating characteristic curve (AUC). The results indicated that all models perform very well (minimum AUC = 0.87 for the testing dataset). The RF models outperformed all other models at all spatial resolutions and the RF model at 2 m spatial resolution was superior for the present flood inventory and predictor variables. The majority of the models had a moderate performance for predictions outside the training area based on Kappa evaluation (minimum AUC = 0.8). Aspect and altitude were the most influencing factors on the image-based and point-based models respectively. Data-driven models can be a reliable tool for urban pluvial flood susceptibility mapping wherever a reliable flood inventory is available. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1297 KW - Urban pluvial flood susceptibility KW - convolutional neural network KW - deep learning KW - random forest KW - support vector machine KW - spatial resolution KW - flood predictors Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576806 SN - 1866-8372 IS - 1297 SP - 1640 EP - 1662 ER - TY - JOUR A1 - Bürger, Gerd A1 - Heistermann, Maik A1 - Bronstert, Axel T1 - Towards subdaily rainfall disaggregation via Clausius-Clapeyron JF - Journal of hydrometeorology N2 - Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius-Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications. Y1 - 2014 U6 - https://doi.org/10.1175/JHM-D-13-0161.1 SN - 1525-755X SN - 1525-7541 VL - 15 IS - 3 SP - 1303 EP - 1311 PB - American Meteorological Soc. CY - Boston ER -