TY - GEN A1 - Ma, Xuemin A1 - Zhang, Youjun A1 - Turečková, Veronika A1 - Xue, Gang-Ping A1 - Fernie, Alisdair R. A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 787 KW - abscisic-acid KW - arabidopsis-thaliana KW - chlorophyll degradation KW - aba biosynthesis KW - oryza-sativa KW - rice leaves KW - genes KW - expression KW - metabolism KW - protein Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-437643 SN - 1866-8372 IS - 787 ER - TY - JOUR A1 - Thirumalaikumar, Venkatesh P. A1 - Gorka, Michal A1 - Schulz, Karina A1 - Masclaux-Daubresse, Celine A1 - Sampathkumar, Arun A1 - Skirycz, Aleksandra A1 - Vierstra, Richard D. A1 - Balazadeh, Salma T1 - Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1 JF - Autophagy N2 - In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS. KW - Arabidopsis thaliana KW - heat stress KW - HSFA2 KW - HSP90.1 KW - NBR1 KW - ROF1 KW - selective autophagy KW - stress memory KW - stress recovery Y1 - 2020 U6 - https://doi.org/10.1080/15548627.2020.1820778 SN - 1554-8635 VL - 17 IS - 9 SP - 2184 EP - 2199 PB - Taylor & Francis CY - Abingdon ER - TY - GEN A1 - Thirumalaikumar, Venkatesh P. A1 - Devkar, Vikas A1 - Mehterov, Nikolay A1 - Ali, Shawkat A1 - Ozgur, Rengin A1 - Turkan, Ismail A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell‐damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus‐induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought‐responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress‐related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 568 KW - Arabidopsis KW - tomato KW - transcription factor KW - drought KW - reactive oxygen species KW - DELLA Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423908 SN - 1866-8372 IS - 568 ER -