TY - JOUR A1 - Altenberger, Uwe A1 - Cisterna, Clara A1 - Günter, Christina A1 - Gutiérrez, Adolfo Antonio A1 - Rosales, J. T1 - Tectono-metamorphic evolution of the proto-Andean margin of Gondwana BT - Evidence of internal high-grade metamorphism along the northern portion of the Famatinian orogen, Sierra de Aconquija, Sierras Pampeanas Orientales, Argentina JF - Journal of South American earth sciences N2 - The present work gives a detailed analysis of the metamorphic and structural evolution of the back-arc portion of the Famatinian Orogen exposed in the southern Sierra de Aconquija (Cuesta de La Chilca segment) in the Sierras Pampeanas Orientales (Eastern Pampean Sierras). The Pampeanas Orientales include from north to south the Aconquija, Ambato and Ancasti mountains. They are mainly composed of middle to high grade metasedimentary units and magmatic rocks. At the south end of the Sierra de Aconquija, along an east to west segment extending over nearly 10 km (Cuesta de La Chilca), large volumes of metasedimentary rocks crop out. The eastern metasediments were defined as members of the El Portezuelo Metamorphic-Igneous Complex (EPMIC) or Eastern block and the western ones relate to the Quebrada del Molle Metamorphic Complex (QMMC) or Western block. The two blocks are divided by the La Chilca Shear Zone, which is reactivated as the Rio Chanarito fault. The EPMIC, forming the hanging wall, is composed of schists, gneisses and rare amphibolites, calc- silicate schists, marbles and migmatites. The rocks underwent multiple episodes of deformation and a late high strain-rate episode with gradually increasing mylonitization to the west. Metamorphism progrades from a M-1 phase to the peak M-3, characterized by the reactions: Qtz + Pl + Bt +/- Ms -> Grt + Bt(2) + Pl(2) +/- Sil +/- Kfs, Qtz + Bt + Sil -> Crd + Kfs and Qtz + Grt + Sil -> Crd. The M-3 assemblage is coeval with the dominant foliation related to a third deformational phase (D-3). The QMMC, forming the foot wall, is made up of fine-grained banded quartz - biotite schists with quartz veins and quartz-feldspar-rich pegmatites. To the east, schists are also overprinted by mylonitization. The M-3 peak assemblage is quartz + biotite + plagioclase +/- garnet +/- sillimanite +/- muscovite +/- ilmenite +/- magnetite +/- apatite. The studied segment suffered multiphase deformation and metamorphism. Some of these phases can be correlated between both blocks. D-1 is locally preserved in scarce outcrops in the EPMIC but is the dominant in the QMMC, where S-1 is nearly parallel to S-0. In the EPMIC, D-2 is represented by the S-2 foliation, related to the F-2 folding that overprints S-1, with dominant strike NNW - SSE and high angles dip to the E. D-3 in the EPMIC have F-3 folds with axis oblique to S-2; the S-3 foliation has striking NW - SE dipping steeply to the E or W and develops interference patterns. In the QMMC, S-2 (D-2) is a discontinuous cleavage oblique to S-1 and transposed by S-3 (D-3), subparallel to S-1. Such structures in the QMMC developed at subsolidus conditions and could be correlated to those of the EPMIC, which formed under higher P-T conditions. The penetrative deformation D-2 in the EPMIC occurred during a prograde path with syntectonic growth of garnet reaching P-T conditions of 640 degrees C and 0.54 GPa in the EPMIC. This stage was followed by a penetrative deformation D-3 with syn-kinematic growth of garnet, cordierite and plagioclase. Peak P-T conditions calculated for M-3 are 710 degrees C and 0.60 GPa, preserved in the western part of the EPMIC, west of the unnamed fault. The schists from the QMMC suffered the early low grade M-1 metamorphism with minimum PT conditions of ca 400 degrees C and 0.35 GPa, comparable to the fine schists (M-1) outcropping to the east. The D-2 deformation is associated with the prograde M-2 metamorphism. The penetrative D-3 stage is related to a medium grade metamorphism M-3, with peak conditions at ca 590 degrees C and 0.55 GPa. The superimposed stages of deformation and metamorphism reaching high P-T conditions followed by isothermal decompression, defining a clockwise orogenic P-T path. During the Lower Paleozoic, folds were superimposed and recrystallization as well as partial melting at peak conditions occurred. Similar characteristics were described from the basement from other Famatinian-dominated locations of the Sierra de Aconquija and other ranges of the Sierras Pampeanas Orientales. KW - Famatinian KW - Sierras Pampeanas Orientales KW - Cuesta de la chilca KW - PT path Y1 - 2021 U6 - https://doi.org/10.1016/j.jsames.2021.103305 SN - 0895-9811 VL - 110 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Bastian, Philipp U. A1 - Robel, Nathalie A1 - Schmidt, Peter A1 - Schrumpf, Tim A1 - Günter, Christina A1 - Roddatis, Vladimir A1 - Kumke, Michael U. T1 - Resonance energy transfer to track the motion of lanthanide ions BT - what drives the intermixing in core-shell upconverting nanoparticles? JF - Biosensors : open access journal N2 - The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process. KW - upconversion nanoparticles KW - lanthanoid migration KW - lanthanides KW - core-shell KW - energy transfer Y1 - 2021 U6 - https://doi.org/10.3390/bios11120515 SN - 2079-6374 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Block, Inga A1 - Günter, Christina A1 - Rodrigues, Alysson Duarte A1 - Paasch, Silvia A1 - Hesemann, Peter A1 - Taubert, Andreas T1 - Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water JF - Materials N2 - Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed. KW - water KW - spent coffee KW - dye adsorption KW - methylene blue KW - methyl orange KW - calcium carbonate KW - activated carbon KW - water treatment KW - dye removal Y1 - 2021 U6 - https://doi.org/10.3390/ma14143996 SN - 1996-1944 VL - 14 IS - 14 PB - MDPI CY - Basel ER -