TY - JOUR A1 - Reindl, Nicole A1 - Rauch, Thomas A1 - Werner, Klaus A1 - Kruk, J. W. A1 - Todt, Helge Tobias T1 - On helium-dominated stellar evolution: the mysterious role of the O(He)-type stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. About a quarter of all post-asymptotic giant branch (AGB) stars are hydrogen-deficient. Stellar evolutionary models explain the carbon-dominated H-deficient stars by a (very) late thermal pulse scenario where the hydrogen-rich envelope is mixed with the helium-rich intershell layer. Depending on the particular time at which the final flash occurs, the entire hydrogen envelope may be burned. In contrast, helium-dominated post-AGB stars and their evolution are not yet understood. Aims. A small group of very hot, helium-dominated stars is formed by O(He)-type stars. A precise analysis of their photospheric abundances will establish constraints to their evolution. Methods. We performed a detailed spectral analysis of ultraviolet and optical spectra of four O(He) stars by means of state-of-the-art non-LTE model-atmosphere techniques. Results. We determined effective temperatures, surface gravities, and the abundances of H, He, C, N, O, F, Ne, Si, P, S, Ar, and Fe. By deriving upper limits for the mass-loss rates of the O(He) stars, we found that they do not exhibit enhanced mass-loss. The comparison with evolutionary models shows that the status of the O(He) stars remains uncertain. Their abundances match predictions of a double helium white dwarf (WD) merger scenario, suggesting that they might be the progeny of the compact and of the luminous helium-rich sdO-type stars. The existence of planetary nebulae that do not show helium enrichment around every other O(He) star precludes a merger origin for these stars. These stars must have formed in a different way, for instance via enhanced mass-loss during their post-AGB evolution or a merger within a common-envelope (CE) of a CO-WD and a red giant or AGB star. Conclusions. A helium-dominated stellar evolutionary sequence exists that may be fed by different types of mergers or CE scenarios. It appears likely that all these pass through the O(He) phase just before they become WDs. KW - stars: AGB and post-AGB KW - stars: evolution KW - stars: fundamental parameters KW - stars: abundances Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201423498 SN - 0004-6361 SN - 1432-0746 VL - 566 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Mkrtchian, Vanik E. A1 - Henkel, Carsten T1 - On non-equilibrium photon distributions in the Casimir effect JF - Annalen der Physik N2 - The electromagnetic field in a typical geometry of the Casimir effect is described in the Schwinger-Keldysh formalism. The main result is the photon distribution function (Keldysh Green function) in any stationary state of the field. A two-plate geometry with a sliding interface in local equilibrium is studied in detail, and full agreement with the results of Rytov fluctuation electrodynamics is found. KW - Casimir effect KW - van der Waals interaction KW - quantum friction KW - nonequilibrium electrodynamics of nanosystems Y1 - 2014 U6 - https://doi.org/10.1002/andp.201300135 SN - 0003-3804 SN - 1521-3889 VL - 526 IS - 1-2 SP - 87 EP - 101 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Albrecht, Steve A1 - Vandewal, Koen A1 - Tumbleston, John R. A1 - Fischer, Florian S. U. A1 - Douglas, Jessica D. A1 - Frechet, Jean M. J. A1 - Ludwigs, Sabine A1 - Ade, Harald W. A1 - Salleo, Alberto A1 - Neher, Dieter T1 - On the efficiency of charge transfer state splitting in polymer: Fullerene solar cells JF - Advanced materials KW - organic solar cells KW - charge generation KW - geminate recombination KW - charge transfer states KW - driving force KW - excess energy KW - morphology KW - spectroelectrochemistry Y1 - 2014 U6 - https://doi.org/10.1002/adma.201305283 SN - 0935-9648 SN - 1521-4095 VL - 26 IS - 16 SP - 2533 EP - 2539 PB - Wiley-VCH CY - Weinheim ER - TY - THES A1 - Conrad, Claudia T1 - Open cluster groups and complexes T1 - Gruppen und Komplexe offener Sternhaufen N2 - It is generally agreed upon that stars typically form in open clusters and stellar associations, but little is known about the structure of the open cluster system. Do open clusters and stellar associations form isolated or do they prefer to form in groups and complexes? Open cluster groups and complexes could verify star forming regions to be larger than expected, which would explain the chemical homogeneity over large areas in the Galactic disk. They would also define an additional level in the hierarchy of star formation and could be used as tracers for the scales of fragmentation in giant molecular clouds? Furthermore, open cluster groups and complexes could affect Galactic dynamics and should be considered in investigations and simulations on the dynamical processes, such as radial migration, disc heating, differential rotation, kinematic resonances, and spiral structure. In the past decade there were a few studies on open cluster pairs (de La Fuente Marcos & de La Fuente Marcos 2009a,b,c) and on open cluster groups and complexes (Piskunov et al. 2006). The former only considered spatial proximity for the identification of the pairs, while the latter also required tangential velocities to be similar for the members. In this work I used the full set of 6D phase-space information to draw a more detailed picture on these structures. For this purpose I utilised the most homogeneous cluster catalogue available, namely the Catalogue of Open Cluster Data (COCD; Kharchenko et al. 2005a,b), which contains parameters for 650 open clusters and compact associations, as well as for their uniformly selected members. Additional radial velocity (RV) and metallicity ([M/H]) information on the members were obtained from the RAdial Velocity Experiment (RAVE; Steinmetz et al. 2006; Kordopatis et al. 2013) for 110 and 81 clusters, respectively. The RAVE sample was cleaned considering quality parameters and flags provided by RAVE (Matijevič et al. 2012; Kordopatis et al. 2013). To ensure that only real members were included for the mean values, also the cluster membership, as provided by Kharchenko et al. (2005a,b), was considered for the stars cross-matched in RAVE. 6D phase-space information could be derived for 432 out of the 650 COCD objects and I used an adaption of the Friends-of-Friends algorithm, as used in cosmology, to identify potential groupings. The vast majority of the 19 identified groupings were pairs, but I also found four groups of 4-5 members and one complex with 15 members. For the verification of the identified structures, I compared the results to a randomly selected subsample of the catalogue for the Milky Way global survey of Star Clusters (MWSC; Kharchenko et al. 2013), which became available recently, and was used as reference sample. Furthermore, I implemented Monte-Carlo simulations with randomised samples created from two distinguished input distributions for the spatial and velocity parameters. On the one hand, assuming a uniform distribution in the Galactic disc and, on the other hand, assuming the COCD data distributions to be representative for the whole open cluster population. The results suggested that the majority of identified pairs are rather by chance alignments, but the groups and the complex seemed to be genuine. A comparison of my results to the pairs, groups and complexes proposed in the literature yielded a partial overlap, which was most likely because of selection effects and different parameters considered. This is another verification for the existence of such structures. The characteristics of the found groupings favour that members of an open cluster grouping originate from a common giant molecular cloud and formed in a single, but possibly sequential, star formation event. Moreover, the fact that the young open cluster population showed smaller spatial separations between nearest neighbours than the old cluster population indicated that the lifetime of open cluster groupings is most likely comparable to that of the Galactic open cluster population itself. Still even among the old open clusters I could identify groupings, which suggested that the detected structure could be in some cases more long lived as one might think. In this thesis I could only present a pilot study on structures in the Galactic open cluster population, since the data sample used was highly incomplete. For further investigations a far more complete sample would be required. One step in this direction would be to use data from large current surveys, like SDSS, RAVE, Gaia-ESO and VVV, as well as including results from studies on individual clusters. Later the sample can be completed by data from upcoming missions, like Gaia and 4MOST. Future studies using this more complete open cluster sample will reveal the effect of open cluster groupings on star formation theory and their significance for the kinematics, dynamics and evolution of the Milky Way, and thereby of spiral galaxies. N2 - Es ist weithin anerkannt, dass Sterne typischerweise in offenen Sternenhaufen und Sternassoziationen entstehen, dennoch ist wenig über Strukturen in diesem System der offenen Sternhaufen bekannt. Entstehen offenen Sternhaufen und Sternassoziationen isoliert oder entstehen sie bevorzugt in Gruppen und Komplexen? Gruppen und Komplexe von offenen Sternhaufen könnten bestätigen, dass Sternentstehungsregionen größer sind als erwartet, was die Homogenität der chemischen Zusammensetzung über weite Areale in der galaktischen Scheibe erklären würde. Sie würden auch eine weitere Stufe in der Hierarchie der Sternentstehung definieren und könnten als Indikatoren für die Skalen der Fragmentierung in Riesenmolekülwolken dienen. Des Weiteren könnten Gruppen und Komplexe von offenen Sternhaufen die Dynamik unserer Galaxis beeinflussen und sollten in Untersuchungen und Simulationen von dynamischen Prozessen, wie radiale Migration, kinematische Aufheizung der Scheibe, differentielle Rotation, kinematische Resonanzen und der Spiralstruktur, miteinbezogen werden. In den vergangenen Jahrzehnten gab es einigen Studien zu Paaren von offenen Sternhaufen (de La Fuente Marcos & de La Fuente Marcos 2009a,b,c) sowie zu Gruppen und Komplexen von offenen Sternhaufen (Piskunov et al. 2006). Erstere betrachteten ausschließlich räumliche Nähe für die Identifizierung der Paare, während letztere auch ähnliche tangentiale Geschwindigkeiten für die Mitglieder verlangten. In dieser Arbeit nutzte ich den kompletten Satz an 6D-Phasenrauminformationen, um ein vollständigeres Bild dieser Strukturen zu erstellen. Aus diesem Grund habe ich den homogensten Sternhaufenkatalog verwendet, der zu dieser Zeit verfügbar war, nämlich den Catalogue of Open Cluster Data (COCD; Kharchenko et al. 2005a,b), welcher Parameter für 650 offene Sternhaufen und Sternassoziationen, sowie deren einheitlich ausgewählte Mitglieder, enthält. Weitere Radialgeschwindigkeits- (RV) und Metallizitätsinformationen ([M/H]) für die Sternhaufenmitglieder wurden mit Hilfe des RAdial Velocity Experiment (RAVE; Steinmetz et al. 2006; Kordopatis et al. 2013) für 110 beziehungsweise 81 Haufen bestimmt. Der RAVE-Datensatz wurde mit Hilfe von Qualitätsparametern aus RAVE (Matijevič et al. 2012; Kordopatis et al. 2013) gereinigt. Um sicherzustellen, dass nur echte Mitglieder für die Mittelwertbestimmung betrachtet wurden, wurde auch die Haufenmitgliedschaft, wie von Kharchenko et al. (2005a,b) bereitgestellt, für die in RAVE identifizierten Sterne miteinbezogen. 6D-Phasenrauminformationen konnten für 432 der 650 COCD Objekte bestimmt werden und ich habe eine angepasste Variante des Friends-of-Friends Algorithmus genutzt, der in der Kosmologie verwendet wird, um potenzielle Gruppierungen zu identifizieren. Der überwiegende Teil der 19 identifizierten Gruppierungen waren Paare, ich habe aber auch vier Gruppen mit 4-5 Mitgliedern und einen Komplex mit 15 Mitgliedern gefunden. Für die Bestätigung der identifizierten Strukturen, verglich ich die Ergebnisse mit einem zufällig ausgewählten Datensatz aus dem Milky Way global survey of Star Clusters (MWSC; Kharchenko et al. 2013), der kürzlich erst zur Verfügung gestellt wurde und hier als Vergleichsdatensatz verwendet wurde. Des Weiteren, habe ich Monte-Carlo Simulationen mit zufälligen Datensätzen implementiert, die anhand von zwei unterschiedlichen Varianten für die Ausgangsverteilungen der räumlichen und Geschwindigkeitsparameter generiert wurden. Zum Einen unter der Annahme einer gleichmäßigen Verteilung in der galaktischen Scheibe und zum Anderen unter der Annahme, dass die Datenverteilungen im COCD repräsentativ sind für die gesamte Population der offenen Sternhaufen. Die Ergebnisse deuteten darauf hin, dass die Mehrheit der identifizierten Paare eher zufällige Anordnungen sind, aber die Gruppen und der Komplex schienen echt zu sein. Ein Vergleich meiner Ergebnisse mit den in der Literatur vorgeschlagenen Paaren, Gruppen und Komplexen ergab eine teilweise Überschneidung, die höchstwahrscheinlich durch Auswahleffekte und die Verwendung unterschiedlicher Parameter bedingt war. Dies ist eine weitere Bestätigung für die Existenz solcher Strukturen. Die Eigenschaften der gefundenen Gruppierungen bevorzugen, dass die Mitglieder einer Gruppierung von offenen Sternhaufen aus einer gemeinsamen Riesenmolekülwolke stammen und in einem Sternentstehungsereignis geformt wurden, das möglicherweise auch sequenziell ablief. Außerdem zeigte die junge Population der offenen Sternhaufen kleinere räumliche Abstände zwischen den nächsten Nachbarn als die alte Haufenpopulation, was darauf hindeutet, dass die Lebenszeit von Gruppierungen von offenen Sternhaufen vergleichbar ist mit der für die Population galaktischer offener Sternhaufen selbst. Dennoch wurden auch unter den alten offenen Sternhaufen Gruppierungen identifiziert, was andeutete, dass die gefundenen Strukturen doch in einigen Fällen langlebiger ist als man denken könnte. In dieser Doktorarbeit konnte ich nur eine Pilotstudie zu Strukturen in der Population der galaktischen offenen Sternhaufen präsentieren, da der verwendete Datensatz höchst unvollständig war. Für zukünftige Untersuchungen wäre ein deutlich vollständigerer Datensatz notwendig. Ein Schritt in diese Richtung wäre die Verwendung von Daten aus großen momentan verfügbaren Beobachtungskampagnen, wie dem SDSS, RAVE, Gaia-ESO und dem VVV, sowie das miteinbeziehen der Ergebnisse von Studien an einzelnen offenen Sternhaufen. Später könnte dieser Datensatz durch die Verwendung von Daten aus kommenden Missionen, wie Gaia und 4MOST, komplettiert werden. Zukünftige Studien mit einem vollständigeren Datensatz werden den Einfluss von Gruppierungen von offenen Sternhaufen für die Sternentstehungstheorie und ihre Bedeutung für die Kinematik, Dynamik und Entwicklung der Milchstraße, und damit auch für andere Spiralgalaxien, enträtseln. KW - open clusters and stellar associations KW - stellar populations KW - offene Sternhaufen und stellare Assoziationen KW - Sternpopulationen Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-77605 ER - TY - GEN A1 - Eschenlohr, Andrea A1 - Battiato, Mario A1 - Maldonado, P. A1 - Pontius, N. A1 - Kachel, T. A1 - Holldack, K. A1 - Mitzner, Rolf A1 - Föhlisch, Alexander A1 - Oppeneer, P. M. A1 - Stamm, Christian T1 - Optical excitation of thin magnetic layers in multilayer structures Reply T2 - Nature materials Y1 - 2014 U6 - https://doi.org/10.1038/nmat3851 SN - 1476-1122 SN - 1476-4660 VL - 13 IS - 2 SP - 102 EP - 103 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Proctor, Christopher M. A1 - Albrecht, Steve A1 - Kuik, Martijn A1 - Neher, Dieter A1 - Thuc-Quyen Nguyen, T1 - Overcoming geminate recombination and enhancing extraction in solution-processed small molecule solar cells JF - dvanced energy materials Y1 - 2014 U6 - https://doi.org/10.1002/aenm.201400230 SN - 1614-6832 SN - 1614-6840 VL - 4 IS - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Moule, Adam J. A1 - Neher, Dieter A1 - Turner, Sarah T. ED - Ludwigs, S T1 - P3HT-Based solar cells: structural properties and photovoltaic performance JF - Advances in Polymer Science JF - Advances in Polymer Science N2 - Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene: phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT: PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications. KW - Free carrier generation KW - Non-geminate recombination KW - Organic solar cells Y1 - 2014 SN - 978-3-662-45145-8; 978-3-662-45144-1 U6 - https://doi.org/10.1007/12_2014_289 SN - 0065-3195 VL - 265 SP - 181 EP - 232 PB - Springer CY - Berlin ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity JF - Soft matter N2 - We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells. Y1 - 2014 U6 - https://doi.org/10.1039/c3sm52846d SN - 1744-683X SN - 1744-6848 VL - 10 IS - 10 SP - 1591 EP - 1601 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zakrevskyy, Yuriy A1 - Titov, Evgenii A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Phase diagrams of DNA-photosensitive surfactant complexes: Effect of ionic strength and surfactant structure JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4899281 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 16 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Heuer, Axel A1 - Raabe, S. A1 - Menzel, Ralf T1 - Phase memory across two single-photon interferometers including wavelength conversion JF - Physical review : A, Atomic, molecular, and optical physics N2 - Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal generates two single photons (signal and idler) with random phases. Thus, no first-order interference between them occurs. However, coherence can be induced in a cascaded setup of two crystals if, e.g., the idler modes of both crystals are aligned to be indistinguishable. Due to the effect of phase memory it is found that the first-order interference of the signal beams can be controlled by the phase delay between the pump beams. Even for pump photon delays much larger than the coherence length of the SPDC photons, the visibility is above 90%. The high visibilities reported here prove an almost perfect phase memory effect across the two interferometers for the pump and the signal photon modes. Y1 - 2014 U6 - https://doi.org/10.1103/PhysRevA.90.045803 SN - 1050-2947 SN - 1094-1622 VL - 90 IS - 4 PB - American Physical Society CY - College Park ER -