TY - JOUR A1 - Sahle, Christoph J. A1 - Niskanen, Johannes A1 - Schmidt, Christian A1 - Stefanski, Johannes A1 - Gilmore, Keith A1 - Forov, Yury A1 - Jahn, Sandro A1 - Wilke, Max A1 - Sternemann, Christian T1 - Cation Hydration in Supercritical NaOH and HCl Aqueous Solutions JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - We present a study of the local atomic environment of the oxygen atoms in the aqueous solutions of NaOH and HCl under simultaneous high-temperature and high-pressure conditions. Experimental nonresonant X-ray Raman scattering core-level spectra at the oxygen K-edge show systematic changes as a function of temperature and pressure. These systematic changes are distinct for the two different solutes and are described well by calculations within the Bethe- Salpeter formalism for snapshots from ab initio molecular dynamics simulations. The agreement between experimental and simulation results allows us to use the computations for a detailed fingerprinting analysis in an effort to elucidate the local atomic structure and hydrogen-bonding topology in these relevant solutions. We observe that both electrolytes, especially NaOH, enhance hydrogen bonding and tetrahedrality in the water structure at supercritical conditions, in particular in the vicinity of the hydration shells. This effect is accompanied with the association of the HCl and NaOH molecules at elevated temperatures. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.7b09688 SN - 1520-6106 VL - 121 SP - 11383 EP - 11389 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Holten, Vincent A1 - Qiu, Chen A1 - Guillerm, Emmanuel A1 - Wilke, Max A1 - Ricka, Jaroslav A1 - Frenz, Martin A1 - Caupin, Frederic T1 - Compressibility Anomalies in Stretched Water and Their Interplay with Density Anomalies JF - The journal of physical chemistry letters N2 - Water keeps puzzling scientists because of its numerous properties which behave oppositely to those of usual liquids: for instance, water expands upon cooling, and liquid water is denser than ice. To explain this anomalous behavior, several theories have been proposed, with different predictions for the properties of supercooled water (liquid at conditions where ice is stable). However, discriminating between those theories with experiments has remained elusive because of spontaneous ice nucleation. Here we measure the sound velocity in liquid water stretched to negative pressure and derive an experimental equation of state, which reveals compressibility anomalies. We show by rigorous thermodynamic relations how these anomalies are intricately linked with the density anomaly. Some features we observe are necessary conditions for the validity of two theories of water. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b02563 SN - 1948-7185 VL - 8 SP - 5519 EP - 5522 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Sirbescu, Mona-Liza C. A1 - Schmidt, Christian A1 - Veksler, Ilya V. A1 - Whittington, Alan G. A1 - Wilke, Max T1 - Experimental crystallization of undercooled felsic liquids BT - generation of pegmatitic texture JF - Journal of petrology N2 - The crystallization kinetics of silicate liquids were studied experimentally in the system haplogranite-B-Li-H2O, at variable degrees of undercooling and variable water concentration. We investigated the kinetics of nucleation and crystallization of unseeded synthetic hydrous haplogranite with 1 wt % Li2O + 2 center dot 3 wt % B2O3 added (composition C1) and 2 wt % Li2O + 4 center dot 6 wt % B2O3 added (composition C2). Compositions C1 and C2 are simplified representative bulk compositions of Li-rich pegmatites and their highly differentiated cores, respectively. Starting water contents varied between 3 and 9 wt %. With few exceptions, the system remained water-undersaturated. About 86 isothermal runs of 1-60 days duration, grouped in 25 time series of constant temperature and initial H2O content, were carried out at temperatures from 400 to 700A degrees C at 300 MPa, corresponding to variable degrees of undercooling between the liquidus and glass transition. Viscosity measurements indicate that the glass transition for both compositions is below 400A degrees C for 3 wt % water and below 300A degrees C for 6 center dot 5 wt % water. The melts remained virtually crystal free at 400A degrees C, about 100A degrees C and 120A degrees C above the glass transition for compositions C1 and C2, respectively, in experiments up to 30 days long. This result is consistent with the existence of low-temperature, undercooled melts in the crust. At lower values of undercooling the runs crystallized partially, up to about 70% volume fraction. Undercooling and the amount of water are the main factors controlling nucleation and growth rates, and therefore textures. Minerals nucleate and grow sequentially according to mineral-specific nucleation delays. The mineral assemblage started with Li-Al stuffed quartz (in C1) and virgilite (in C2), solid-solutions between quartz and gamma-spodumene. The quartz-like phases were typically followed by spherulitic alkali feldspar-quartz intergrowths, euhedral petalite, and fine-grained muscovite. Nearly pure quartz formed as rims and replacement of metastable virgilite and stuffed quartz, in particular at the boron- and water-rich crystallization front of large feldspar or petalite. With the exception of muscovite, all minerals nucleated heterogeneously, on the capsule wall or on pre-existing minerals, and grew inwards, towards the capsule center. Experimental textures resembled the textures of zoned pegmatites, including skeletal, graphic, unidirectional, radiating, spherulitic, massive, and replacement textures. In some cases, when fluid saturation was reached, miarolitic cavities developed containing euhedral crystals. Although unidirectional growth rates appeared to slow down in time, volumetric rates for stable graphic alkali-feldspar quartz intergrowths and petalite remained constant for up to 60 days and similar to 70% crystallization. Metastable stuffed quartz and virgilite diminished in their growth rates in runs of 30 days or longer, were resorbed in the melt, and were partially replaced by second-generation quartz. Unobstructed, self-sustained crystal growth in conditions of very low nucleation density appears to be the dominant mechanism to form giant pegmatitic crystals, although experimental growth rates are much slower than predicted in nature based on conductive-cooling models. KW - experimental petrology KW - lithium pegmatites KW - igneous texture KW - viscosity KW - crystal nucleation KW - crystal growth rate Y1 - 2017 U6 - https://doi.org/10.1093/petrology/egx027 SN - 0022-3530 SN - 1460-2415 VL - 58 IS - 3 SP - 539 EP - 568 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Weis, Christopher A1 - Sternemann, Christian A1 - Cerantola, Valerio A1 - Sahle, Christoph J. A1 - Spiekermann, Georg A1 - Harder, Manuel A1 - Forov, Yury A1 - Kononov, Alexander A1 - Sakrowski, Robin A1 - Yavas, Hasan A1 - Tolan, Metin A1 - Wilke, Max T1 - Pressure driven spin transition in siderite and magnesiosiderite single crystals JF - Scientific reports Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-16733-3 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER -