TY - JOUR A1 - Xu, J. A1 - Brearley, C. A. A1 - Lin, W. H. A1 - Wang, Y. A1 - Ye, R. A1 - Müller-Röber, Bernd A1 - Xu, Z. H. A1 - Xue, H. W. T1 - A role of Arabidopsis inositol polyphosphate kinase, AtIPK2 alpha, in pollen germination and root growth N2 - Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2alpha), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-beta-glucuronidase reporter gene analyses showed that AtIPK2alpha is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2alpha antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2alpha transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca2+ concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca2+ concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2alpha, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores Y1 - 2005 SN - 0032-0889 ER - TY - JOUR A1 - Michard, Erwan A1 - Lacombe, Benoît A1 - Poree, Fabien A1 - Müller-Röber, Bernd A1 - Sentenac, Hervé A1 - Thibaud, Jean-Baptiste A1 - Dreyer, Ingo T1 - A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation N2 - Among all voltage-gated K+ channels from the model plant Arabidopsis thaliana, the weakly rectifying K+ channel (K-weak channel) AKT2 displays unique gating properties. AKT2 is exceptionally regulated by phosphorylation: when nonphosphorylated AKT2 behaves as an inward-rectifying potassium channel; phosphorylation of AKT2 abolishes inward rectification by shifting its activation threshold far positive (>200 mV) so that it closes only at voltages positive of + 100 mV. In its phosphorylated form, AKT2 is thus locked in the open state in the entire physiological voltage range. To understand the molecular grounds of this unique gating behavior, we generated chimeras between AKT2 and the conventional inward-rectifying channel KAT1. The transfer of the pore from KAT1 to AKT2 altered the permeation properties of the channel. However, the gating properties were unaffected, suggesting that the pore region of AKT2 is not responsible for the unique K-weak gating. Instead, a lysine residue in S4, highly conserved among all K-weak channels but absent from other plant K+ channels, was pinpointed in a site-directed mutagenesis approach. Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward- rectifying channel. Interestingly, phosphoregulation of the mutant AKT2-K197S appeared to be similar to that of the K-in channel KAT1: as suggested by mimicking the phosphorylated and dephosphorylated states, phosphorylation induced a shift of the activation threshold of AKT2-K197S by about +50 mV. We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation. The phosphorylation-induced reduction of the activation energy in AKT2 is similar to 6 kT larger than in the K197S mutant. It is discussed that this hypersensitive response of AKT2 to phosphorylation equips a cell with the versatility to establish a potassium gradient and to make efficient use of it Y1 - 2005 ER - TY - JOUR A1 - Gomez-Merino, Fernando Carlos A1 - Arana-Ceballos, Fernando Alberto A1 - Trejo-Tellez, L. I. A1 - Skirycz, Aleksandra A1 - Brearley, C. A. A1 - Dormann, P. A1 - Müller-Röber, Bernd T1 - Arabidopsis AtDGK7, the smallest member of plant diacylglycerol kinases (DGKs), displays unique biochemical features and saturates at low substrate concentration : the DGK inhibitor R59022 differentially affects AtDGK2 and AtDGK7 activity in vitro and alters plant growth and development N2 - Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK. Here, we demonstrate that a representative of this cluster, AtDGK7, is biochemically active when expressed as a recombinant protein in Escherichia coli. AtDGK7, encoded by gene locus At4g30340, contains 374 amino acids with an apparent molecular mass of 41.2 kDa. AtDGK7 harbors an N-terminal catalytic domain, but in contrast to various characterized DGKs (including AtDGK2), it lacks a cysteine-rich domain at its N terminus, and, importantly, its C-terminal DGK accessory domain is incomplete. Recombinant AtDGK7 expressed in E. coli exhibits Michaelis-Menten type kinetics with 1,2-dioleoyl-sn-glycerol as substrate. AtDGK7 activity was affected by pH, detergents, and the DGK inhibitor R59022. We demonstrate that both AtDGK2 and AtDGK7 phosphorylate diacylglycerol molecular species that are typically found in plants, indicating that both enzymes convert physiologically relevant substrates. AtDGK7 is expressed throughout the Arabidopsis plant, but expression is strongest in flowers and young seedlings. Expression of AtDGK2 is transiently induced by wounding. R59022 at similar to 80 mu M inhibits root elongation and lateral root formation and reduces plant growth, indicating that DGKs play an important role in plant development Y1 - 2005 SN - 0021-9258 ER - TY - JOUR A1 - Lin, W. H. A1 - Wang, Y. A1 - Müller-Röber, Bernd A1 - Brearley, C. A. A1 - Xu, Z. H. A1 - Xue, H. W. T1 - At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis N2 - Phosphatidylinositol signaling pathway and the relevant metabolites are known to be critical to the modulation of different aspects of plant growth, development, and stress responses. Inositol polyphosphate 5-phosphatase is a key enzyme involved in phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study shows that At5PTase11 mediates cotyledon vascular development probably through the regulation of intracellular calcium levels. In this study, we provide evidence that At5PTase13 modulates the development of cotyledon veins through its regulation of auxin homeostasis. A T-DNA insertional knockout mutant, At5pt13-1, showed a defect in development of the cotyledon vein, which was rescued completely by exogenous auxin and in part by brassinolide, a steroid hormone. Furthermore, the mutant had reduced auxin content and altered auxin accumulation in seedlings revealed by the DR5:beta-glucuronidase fusion construct in seedlings. In addition, microarray analysis shows that the transcription of key genes responsible for auxin biosynthesis and transport was altered in At5pt13-1. The At5pt13-1 mutant was also less sensitive to auxin inhibition of root elongation. These results suggest that At5PTase13 regulates the homeostasis of auxin, a key hormone controlling vascular development in plants Y1 - 2005 SN - 0032-0889 ER - TY - JOUR A1 - Riano-Pachon, Diego Mauricio A1 - Dreyer, Ingo A1 - Müller-Röber, Bernd T1 - Orphan transcripts in Arabidopsis thaliana : identification of several hundred previously unrecognized genes N2 - Expressed sequence tags (ESTs) represent a huge resource for the discovery of previously unknown genetic information and functional genome assignment. In this study we screened a collection of 178 292 ESTs from Arabidopsis thaliana by testing them against previously annotated genes of the Arabidopsis genome. We identified several hundreds of new transcripts that match the Arabidopsis genome at so far unassigned loci. The transcriptional activity of these loci was independently confirmed by comparison with the Salk Whole Genome Array Data. To a large extent, the newly identified transcriptionally active genomic regions do not encode 'classic' proteins, but instead generate non-coding RNAs and/or small peptide-coding RNAs of presently unknown biological function. More than 560 transcripts identified in this study are not represented by the Affymetrix GeneChip arrays currently widely used for expression profiling in A. thaliana. Our data strongly support the hypothesis that numerous previously unknown genes exist in the Arabidopsis genome Y1 - 2005 SN - 0960-7412 ER -