TY - JOUR A1 - Salazar, S. A1 - Frances, F. A1 - Komma, J. A1 - Blume, Theresa A1 - Francke, Till A1 - Bronstert, Axel A1 - Blöschl, Günter T1 - A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions JF - Natural hazards and earth system sciences N2 - In this paper, we analyse the effectiveness of flood management measures based on the concept known as "retaining water in the landscape". The investigated measures include afforestation, micro-ponds and small-reservoirs. A comparative and model-based methodological approach has been developed and applied for three meso-scale catchments located in different European hydro-climatological regions: Poyo (184 km(2)) in the Spanish Mediterranean, Upper Iller (954 km(2)) in the German Alps and Kamp (621 km(2)) in Northeast-Austria representing the Continental hydro-climate. This comparative analysis has found general similarities in spite of the particular differences among studied areas. In general terms, the flood reduction through the concept of "retaining water in the landscape" depends on the following factors: the storage capacity increase in the catchment resulting from such measures, the characteristics of the rainfall event, the antecedent soil moisture condition and the spatial distribution of such flood management measures in the catchment. In general, our study has shown that, this concept is effective for small and medium events, but almost negligible for the largest and less frequent floods: this holds true for all different hydro-climatic regions, and with different land-use, soils and morphological settings. Y1 - 2012 U6 - https://doi.org/10.5194/nhess-12-3287-2012 SN - 1561-8633 VL - 12 IS - 11 SP - 3287 EP - 3306 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Reusser, Dominik A1 - Blume, Theresa A1 - Schaefli, Bettina A1 - Zehe, Erwin T1 - Analysing the temporal dynamics of model performance for hydrological models N2 - The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physicsbased model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 140 KW - Rainfall-runoff response KW - Process identification KW - Improved calibration KW - Soil-moisture KW - Catchment Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45114 ER - TY - JOUR A1 - Blume, Theresa A1 - Schneider, Lisa A1 - Güntner, Andreas T1 - Comparative analysis of throughfall observations in six different forest stands BT - Influence of seasons, rainfall- and stand characteristics JF - Hydrological processes N2 - Throughfall, that is, the fraction of rainfall that passes through the forest canopy, is strongly influenced by rainfall and forest stand characteristics which are in turn both subject to seasonal dynamics. Disentangling the complex interplay of these controls is challenging, and only possible with long-term monitoring and a large number of throughfall events measured in parallel at different forest stands. We therefore based our analysis on 346 rainfall events across six different forest stands at the long-term terrestrial environmental observatory TERENO Northeast Germany. These forest stands included pure stands of beech, pine and young pine, and mixed stands of oak-beech, pine-beech and pine-oak-beech. Throughfall was overall relatively low, with 54-68% of incident rainfall in summer. Based on the large number of events it was possible to not only investigate mean or cumulative throughfall but also its statistical distribution. The distributions of throughfall fractions show distinct differences between the three types of forest stands (deciduous, mixed and pine). The distributions of the deciduous stands have a pronounced peak at low throughfall fractions and a secondary peak at high fractions in summer, as well as a pronounced peak at higher throughfall fractions in winter. Interestingly, the mixed stands behave like deciduous stands in summer and like pine stands in winter: their summer distributions are similar to the deciduous stands but the winter peak at high throughfall fractions is much less pronounced. The seasonal comparison further revealed that the wooden components and the leaves behaved differently in their throughfall response to incident rainfall, especially at higher rainfall intensities. These results are of interest for estimating forest water budgets and in the context of hydrological and land surface modelling where poor simulation of throughfall would adversely impact estimates of evaporative recycling and water availability for vegetation and runoff. KW - forest hydrology KW - forest stand characteristics KW - interception KW - leaf area KW - index KW - rainfall characteristics KW - seasonal effects KW - stratified event KW - analysis KW - throughfall KW - tree species effects Y1 - 2021 U6 - https://doi.org/10.1002/hyp.14461 SN - 0885-6087 SN - 1099-1085 VL - 36 IS - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Blume, Theresa A1 - Bauer, Andreas A1 - Bronstert, Axel T1 - Experimental techniques for the Investigation of Runoff Processes in a Small Catchment in the Chilean Andes Y1 - 2004 SN - 3-937758-18-6 ER - TY - JOUR A1 - Reich, Marvin A1 - Mikolaj, Michal A1 - Blume, Theresa A1 - Güntner, Andreas T1 - Field-scale subsurface flow processes inferred from continuous gravity monitoring during a sprinkling experiment JF - Water resources research : WRR / American Geophysical Union N2 - Field-scale subsurface flow processes are difficult to observe and monitor. We investigated the value of gravity time series to identify subsurface flow processes by carrying out a sprinkling experiment in the direct vicinity of a superconducting gravimeter. We demonstrate how different water mass distributions in the subsoil affect the gravity signal and show the benefit of using the shape of the gravity response curve to identify different subsurface flow processes. For this purpose, a simple hydro-gravimetric model was set up to test different scenarios in an optimization approach, including the processes macropore flow, preferential flow, wetting front advancement (WFA), bypass flow and perched water table rise. Besides the gravity observations, electrical resistivity and soil moisture data were used for evaluation. For the study site, the process combination of preferential flow and WFA led to the best correspondence to the observations in a multi-criteria assessment. We argue that the approach of combining field-scale sprinkling experiments in combination with gravity monitoring can be transferred to other sites for process identification, and discuss related uncertainties including limitations of the simple model used here. The study stresses the value of advancing terrestrial gravimetry as an integrative and non-invasive monitoring technique for assessing hydrological states and dynamics. KW - Hydrogravimetry Y1 - 2021 U6 - https://doi.org/10.1029/2021WR030044 SN - 0043-1397 SN - 1944-7973 VL - 57 IS - 10 PB - Wiley CY - New York ER - TY - GEN A1 - Angermann, Lisa A1 - Jackisch, Conrad A1 - Allroggen, Niklas A1 - Sprenger, Matthias A1 - Zehe, Erwin A1 - Tronicke, Jens A1 - Weiler, Markus A1 - Blume, Theresa T1 - Form and function in hillslope hydrology BT - characterization of subsurface flow based on response observations T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 658 KW - ground-penetrating radar KW - preferential flow KW - water-flow KW - runoff generation KW - vadose zone KW - catchment KW - scale KW - tracer KW - time KW - pore Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419161 SN - 1866-8372 IS - 658 ER - TY - GEN A1 - Jackisch, Conrad A1 - Angermann, Lisa A1 - Allroggen, Niklas A1 - Sprenger, Matthias A1 - Blume, Theresa A1 - Tronicke, Jens A1 - Zehe, Erwin T1 - Form and function in hillslope hydrology BT - in situ imaging and characterization of flow-relevant structures T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR "trenches". We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 665 KW - Ground Penetrating Radar KW - preferential flow KW - solute transport KW - Catchment Hydrology KW - multiple scales KW - soil moisture KW - water content KW - tracer KW - field KW - model Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419188 SN - 1866-8372 IS - 665 ER - TY - JOUR A1 - Angermann, Lisa A1 - Jackisch, Conrad A1 - Allroggen, Niklas A1 - Sprenger, Matthias A1 - Zehe, Erwin A1 - Tronicke, Jens A1 - Weiler, Markus A1 - Blume, Theresa T1 - Form and function in hillslope hydrology: characterization of subsurface flow based on response observations JF - Hydrology and earth system sciences : HESS N2 - The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017). Y1 - 2017 U6 - https://doi.org/10.5194/hess-21-3727-2017 SN - 1027-5606 SN - 1607-7938 VL - 21 SP - 3727 EP - 3748 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Jackisch, Conrad A1 - Angermann, Lisa A1 - Allroggen, Niklas A1 - Sprenger, Matthias A1 - Blume, Theresa A1 - Tronicke, Jens A1 - Zehe, Erwin T1 - Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures JF - Hydrology and earth system sciences : HESS N2 - The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR "trenches". We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue). Y1 - 2017 U6 - https://doi.org/10.5194/hess-21-3749-2017 SN - 1027-5606 SN - 1607-7938 VL - 21 SP - 3749 EP - 3775 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Zehe, E. A1 - Ehret, U. A1 - Pfister, L. A1 - Blume, Theresa A1 - Schroeder, Boris A1 - Westhoff, M. A1 - Jackisch, C. A1 - Schymanski, Stanislauv J. A1 - Weiler, M. A1 - Schulz, K. A1 - Allroggen, Niklas A1 - Tronicke, Jens A1 - van Schaik, Loes A1 - Dietrich, Peter A1 - Scherer, U. A1 - Eccard, Jana A1 - Wulfmeyer, Volker A1 - Kleidon, Axel T1 - HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments JF - Hydrology and earth system sciences : HESS N2 - According to Dooge (1986) intermediate-scale catchments are systems of organized complexity, being too organized and yet too small to be characterized on a statistical/conceptual basis, but too large and too heterogeneous to be characterized in a deterministic manner. A key requirement for building structurally adequate models precisely for this intermediate scale is a better understanding of how different forms of spatial organization affect storage and release of water and energy. Here, we propose that a combination of the concept of hydrological response units (HRUs) and thermodynamics offers several helpful and partly novel perspectives for gaining this improved understanding. Our key idea is to define functional similarity based on similarity of the terrestrial controls of gradients and resistance terms controlling the land surface energy balance, rainfall runoff transformation, and groundwater storage and release. This might imply that functional similarity with respect to these specific forms of water release emerges at different scales, namely the small field scale, the hillslope, and the catchment scale. We thus propose three different types of "functional units" - specialized HRUs, so to speak - which behave similarly with respect to one specific form of water release and with a characteristic extent equal to one of those three scale levels. We furthermore discuss an experimental strategy based on exemplary learning and replicate experiments to identify and delineate these functional units, and as a promising strategy for characterizing the interplay and organization of water and energy fluxes across scales. We believe the thermodynamic perspective to be well suited to unmask equifinality as inherent in the equations governing water, momentum, and energy fluxes: this is because several combinations of gradients and resistance terms yield the same mass or energy flux and the terrestrial controls of gradients and resistance terms are largely independent. We propose that structurally adequate models at this scale should consequently disentangle driving gradients and resistance terms, because this optionally allow sequifinality to be partly reduced by including available observations, e. g., on driving gradients. Most importantly, the thermodynamic perspective yields an energy-centered perspective on rainfall-runoff transformation and evapotranspiration, including fundamental limits for energy fluxes associated with these processes. This might additionally reduce equifinality and opens up opportunities for testing thermodynamic optimality principles within independent predictions of rainfall-runoff or land surface energy exchange. This is pivotal to finding out whether or not spatial organization in catchments is in accordance with a fundamental organizing principle. Y1 - 2014 U6 - https://doi.org/10.5194/hess-18-4635-2014 SN - 1027-5606 SN - 1607-7938 VL - 18 IS - 11 SP - 4635 EP - 4655 PB - Copernicus CY - Göttingen ER -