TY - GEN A1 - Henschke, Jakob A1 - Kaplick, Hannes A1 - Wochatz, Monique A1 - Engel, Tilman T1 - Assessing the validity of inertial measurement units for shoulder kinematics using a commercial sensor-software system T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background and Aims Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time-consuming data processing procedures are undertaken. However, in clinical practice simple-real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable "off-the-shelf" sensor-software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements. Methods 24 healthy participants (9 female, 15 male, age 29 +/- 4 years, height 177 +/- 11 cm, weight 73 +/- 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass-correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement). Results ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040-0.733, RMSE: 9.7 degrees-20.3 degrees, bias: 1.2 degrees-50.7 degrees) and insufficient agreement during complex shoulder movements (ICC: 0.104-0.453, RMSE: 10.1 degrees-23.3 degrees, bias: 1.0 degrees-55.9 degrees). Peak angular velocity (ICC: 0.202-0.865, RMSE: 14.6 degrees/s-26.7 degrees/s, bias: 10.2 degrees/s-29.9 degrees/s) and mean angular velocity (ICC: 0.019-0.786, RMSE:6.1 degrees/s-34.2 degrees/s, bias: 1.6 degrees/s-27.8 degrees/s) were inconsistent. Conclusions The "off-the-shelf" sensor-software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU-software-solutions may increase measurement accuracy and permit their integration into everyday clinical practice. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 809 KW - diagnostic techniques and procedures KW - kinematics KW - shoulder joint KW - validation study KW - wearable devices Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-578278 SN - 1866-8364 SP - 1 EP - 11 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Engel, Tilman A1 - Schraplau, Anne A1 - Wochatz, Monique A1 - Kopinski, Stephan A1 - Sonnenburg, Dominik A1 - Schomöller, Anne A1 - Risch, Lucie A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - Feasability of An Eccentric Isokinetic Protocol to Induce Trunk Muscle Damage: A Pilot Study T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Eccentric exercise is discussed as a treatment option for clinical populations, but specific responses in terms of muscle damage and systemic inflammation after repeated loading of large muscle groups have not been conclusively characterized. Therefore, this study tested the feasibility of an isokinetic protocol for repeated maximum eccentric loading of the trunk muscles. Nine asymptomatic participants (5 f/4 m; 34±6 yrs; 175±13 cm; 76±17 kg) performed three isokinetic 2-minute all-out trunk strength tests (1x concentric (CON), 2x eccentric (ECC1, ECC2), 2 weeks apart; flexion/extension, 60°/s, ROM 55°). Outcomes were peak torque, torque decline, total work, and indicators of muscle damage and inflammation (over 168 h). Statistics were done using the Friedman test (Dunn’s post-test). For ECC1 and ECC2, peak torque and total work were increased and torque decline reduced compared to CON. Repeated ECC bouts yielded unaltered torque and work outcomes. Muscle damage markers were highest after ECC1 (soreness 48 h, creatine kinase 72 h; p<0.05). Their overall responses (area under the curve) were abolished post-ECC2 compared to post-ECC1 (p<0.05). Interleukin-6 was higher post-ECC1 than CON, and attenuated post-ECC2 (p>0.05). Interleukin-10 and tumor necrosis factor-α were not detectable. All markers showed high inter-individual variability. The protocol was feasible to induce muscle damage indicators after exercising a large muscle group, but the pilot results indicated only weak systemic inflammatory responses in asymptomatic adults. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 773 KW - exercise KW - eccentric KW - muscle fatigue KW - trunk muscles KW - isokinetics KW - repeated bout effect KW - inflammation KW - exercise induced muscle damage KW - interleukin-6 KW - internleukin-10 KW - tumor necrosis factor-α Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557409 SN - 1866-8364 SP - E9 EP - E17 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Lin, Chiao-I A1 - Khajooei, Mina A1 - Engel, Tilman A1 - Nair, Alexandra A1 - Heikkila, Mika A1 - Kaplick, Hannes A1 - Mayer, Frank T1 - The effect of chronic ankle instability on muscle activations in lower extremities T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background/Purpose Muscular reflex responses of the lower extremities to sudden gait disturbances are related to postural stability and injury risk. Chronic ankle instability (CAI) has shown to affect activities related to the distal leg muscles while walking. Its effects on proximal muscle activities of the leg, both for the injured- (IN) and uninjured-side (NON), remain unclear. Therefore, the aim was to compare the difference of the motor control strategy in ipsilateral and contralateral proximal joints while unperturbed walking and perturbed walking between individuals with CAI and matched controls. Materials and methods In a cross-sectional study, 13 participants with unilateral CAI and 13 controls (CON) walked on a split-belt treadmill with and without random left- and right-sided perturbations. EMG amplitudes of muscles at lower extremities were analyzed 200 ms after perturbations, 200 ms before, and 100 ms after (Post100) heel contact while walking. Onset latencies were analyzed at heel contacts and after perturbations. Statistical significance was set at alpha≤0.05 and 95% confidence intervals were applied to determine group differences. Cohen’s d effect sizes were calculated to evaluate the extent of differences. Results Participants with CAI showed increased EMG amplitudes for NON-rectus abdominus at Post100 and shorter latencies for IN-gluteus maximus after heel contact compared to CON (p<0.05). Overall, leg muscles (rectus femoris, biceps femoris, and gluteus medius) activated earlier and less bilaterally (d = 0.30–0.88) and trunk muscles (bilateral rectus abdominus and NON-erector spinae) activated earlier and more for the CAI group than CON group (d = 0.33–1.09). Conclusion Unilateral CAI alters the pattern of the motor control strategy around proximal joints bilaterally. Neuromuscular training for the muscles, which alters motor control strategy because of CAI, could be taken into consideration when planning rehabilitation for CAI. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 712 KW - Electromyography KW - Hip KW - Skeletal joints KW - Knees KW - Legs KW - Musculoskeletal injury KW - Walking KW - Ankles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515632 SN - 1866-8364 ER -