TY - JOUR A1 - Palyulin, Vladimir V. A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Space-fractional Fokker-Planck equation and optimization of random search processes in the presence of an external bias JF - Journal of statistical mechanics: theory and experiment N2 - Based on the space-fractional Fokker-Planck equation with a delta-sink term, we study the efficiency of random search processes based on Levy flights with power-law distributed jump lengths in the presence of an external drift, for instance, an underwater current, an airflow, or simply the preference of the searcher based on prior experience. While Levy flights turn out to be efficient search processes when the target is upstream relative to the starting point, in the downstream scenario, regular Brownian motion turns out to be advantageous. This is caused by the occurrence of leapovers of Levy flights, due to which Levy flights typically overshoot a point or small interval. Studying the solution of the fractional Fokker-Planck equation, we establish criteria when the combination of the external stream and the initial distance between the starting point and the target favours Levy flights over the regular Brownian search. Contrary to the common belief that Levy flights with a Levy index alpha = 1 (i.e. Cauchy flights) are optimal for sparse targets, we find that the optimal value for alpha may range in the entire interval (1, 2) and explicitly include Brownian motion as the most efficient search strategy overall. KW - driven diffusive systems (theory) KW - fluctuations (theory) KW - stochastic processes (theory) KW - diffusion Y1 - 2014 U6 - https://doi.org/10.1088/1742-5468/2014/11/P11031 SN - 1742-5468 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Palyulin, Vladimir V. A1 - Metzler, Ralf T1 - Speeding up the first-passage for subdiffusion by introducing a finite potential barrier JF - Journal of physics : A, Mathematical and theoretical N2 - We show that for a subdiffusive continuous time random walk with scale-free waiting time distribution the first-passage dynamics on a finite interval can be optimized by introduction of a piecewise linear potential barrier. Analytical results for the survival probability and first-passage density based on the fractional Fokker-Planck equation are shown to agree well with Monte Carlo simulations results. As an application we discuss an improved design for efficient translocation of gradient copolymers compared to homopolymer translocation in a quasi-equilibrium approximation. KW - first passage KW - anomalous diffusion KW - potential landscape KW - polymer translocation Y1 - 2014 U6 - https://doi.org/10.1088/1751-8113/47/3/032002 SN - 1751-8113 SN - 1751-8121 VL - 47 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER -