TY - JOUR A1 - Han, Fang A1 - Rydin, Catarina A1 - Bolinder, Kristina A1 - Dupont-Nivet, Guillaume A1 - Abels, Hemmo A. A1 - Koutsodendris, Andreas A1 - Zhang, Kexin A1 - Hoorn, Carina T1 - Steppe development on the Northern Tibetan Plateau inferred from Paleogene ephedroid pollen JF - Grana N2 - Steppe vegetation represents a key marker of past Asian aridification and is associated with monsoonal intensification. Little is, however, known about the origin of this pre-Oligocene vegetation, its specific composition and how it changed over time and responded to climatic variations. Here, we describe the morphological characters of Ephedraceae pollen in Eocene strata of the Xining Basin and compare the pollen composition with the palynological composition of Late Cretaceous and Paleocene deposits of the Xining Basin and the Quaternary deposits of the Qaidam Basin. We find that the Late Cretaceous steppe was dominated by Gnetaceaepollenites; in the transition from the Cretaceous to the Paleocene, Gnetaceaepollenites became extinct and Ephedripites subgenus Ephedripites dominated the flora with rare occurrences of Ephedripites subgen. Distachyapites; the middle to late Eocene presents a strong increase of Ephedripites subgen. Distachyapites; and the Quaternary/Recent is marked by a significantly lower diversity of Ephedraceae (and Nitrariaceae) compared to the Eocene. In the modern landscape of China, only a fraction of the Paleogene species diversity of Ephedraceae remains and we propose that these alterations in Ephedreaceae composition occurred in response to the climatic changes at least since the Eocene. In particular, the strong Eocene monsoons that enhanced the continental aridification may have played an important role in the evolution of Ephedripites subgen. Distachyapites triggering an evolutionary shift to wind-pollination in this group. Conceivably, the Ephedraceae/Nitrariaceae dominated steppe ended during the Eocene/Oligocene climatic cooling and aridification, which favoured other plant taxa. KW - pollen morphology KW - Eocene KW - climate KW - Ephedripites KW - Distachyapites KW - Gnetaceaepollenites KW - monsoon Y1 - 2016 U6 - https://doi.org/10.1080/00173134.2015.1120343 SN - 0017-3134 SN - 1651-2049 VL - 55 SP - 71 EP - 100 PB - Springer CY - Oslo ER - TY - JOUR A1 - Forte, Adam M. A1 - Whipple, Kelin X. A1 - Bookhagen, Bodo A1 - Rossi, Matthew W. T1 - Decoupling of modern shortening rates, climate, and topography in the Caucasus JF - Earth & planetary science letters N2 - The Greater and Lesser Caucasus mountains and their associated foreland basins contain similar rock types, experience a similar two-fold, along-strike variation in mean annual precipitation, and were affected by extreme base-level drops of the neighboring Caspian Sea. However, the two Caucasus ranges are characterized by decidedly different tectonic regimes and rates of deformation that are subject to moderate (less than an order of magnitude) gradients in climate, and thus allow for a unique opportunity to isolate the effects of climate and tectonics in the evolution of topography within active orogens. There is an apparent disconnect between modern climate, shortening rates, and topography of both the Greater Caucasus and Lesser Caucasus which exhibit remarkably similar topography along-strike despite the gradients in forcing. By combining multiple datasets, we examine plausible causes for this disconnect by presenting a detailed analysis of the topography of both ranges utilizing established relationships between catchment-mean erosion rates and topography (local relief, hillslope gradients, and channel steepness) and combining it with a synthesis of previously published low-temperature thermochronologic data. Modern climate of the Caucasus region is assessed through an analysis of remotely-sensed data (TRMM and MODIS) and historical streamflow data. Because along-strike variation in either erosional efficiency or thickness of accreted material fail to explain our observations, we suggest that the topography of both the western Lesser and Greater Caucasus are partially supported by different geodynamic forces. In the western Lesser Caucasus, high relief portions of the landscape likely reflect uplift related to ongoing mantle lithosphere delamination beneath the neighboring East Anatolian Plateau. In the Greater Caucasus, maintenance of high topography in the western portion of the range despite extremely low (<2-4 mm/y) modern convergence rates may be related to dynamic topography from detachment of the north-directed Greater Caucasus slab or to a recent slowing of convergence rates. Large-scale spatial gradients in climate are not reflected in the topography of the Caucasus and do not seem to exert any significant control on the tectonics or structure of either range. (C) 2016 Elsevier B.V. All rights reserved. KW - tectonics KW - erosion KW - climate KW - dynamic topography KW - orogenic processes Y1 - 2016 U6 - https://doi.org/10.1016/j.epsl.2016.06.013 SN - 0012-821X SN - 1385-013X VL - 449 SP - 282 EP - 294 PB - Elsevier CY - Amsterdam ER -